Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frlmpwfi Structured version   Visualization version   GIF version

Theorem frlmpwfi 42587
Description: Formal linear combinations over Z/2Z are equivalent to finite subsets. MOVABLE (Contributed by Stefan O'Rear, 10-Jul-2015.) (Proof shortened by AV, 14-Jun-2020.)
Hypotheses
Ref Expression
frlmpwfi.r 𝑅 = (ℤ/nℤ‘2)
frlmpwfi.y 𝑌 = (𝑅 freeLMod 𝐼)
frlmpwfi.b 𝐵 = (Base‘𝑌)
Assertion
Ref Expression
frlmpwfi (𝐼𝑉𝐵 ≈ (𝒫 𝐼 ∩ Fin))

Proof of Theorem frlmpwfi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 frlmpwfi.r . . . . . 6 𝑅 = (ℤ/nℤ‘2)
21fvexi 6908 . . . . 5 𝑅 ∈ V
3 frlmpwfi.y . . . . . 6 𝑌 = (𝑅 freeLMod 𝐼)
4 eqid 2725 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
5 eqid 2725 . . . . . 6 (0g𝑅) = (0g𝑅)
6 eqid 2725 . . . . . 6 {𝑥 ∈ ((Base‘𝑅) ↑m 𝐼) ∣ 𝑥 finSupp (0g𝑅)} = {𝑥 ∈ ((Base‘𝑅) ↑m 𝐼) ∣ 𝑥 finSupp (0g𝑅)}
73, 4, 5, 6frlmbas 21693 . . . . 5 ((𝑅 ∈ V ∧ 𝐼𝑉) → {𝑥 ∈ ((Base‘𝑅) ↑m 𝐼) ∣ 𝑥 finSupp (0g𝑅)} = (Base‘𝑌))
82, 7mpan 688 . . . 4 (𝐼𝑉 → {𝑥 ∈ ((Base‘𝑅) ↑m 𝐼) ∣ 𝑥 finSupp (0g𝑅)} = (Base‘𝑌))
9 frlmpwfi.b . . . 4 𝐵 = (Base‘𝑌)
108, 9eqtr4di 2783 . . 3 (𝐼𝑉 → {𝑥 ∈ ((Base‘𝑅) ↑m 𝐼) ∣ 𝑥 finSupp (0g𝑅)} = 𝐵)
11 eqid 2725 . . . 4 {𝑥 ∈ (2om 𝐼) ∣ 𝑥 finSupp ∅} = {𝑥 ∈ (2om 𝐼) ∣ 𝑥 finSupp ∅}
12 enrefg 9003 . . . 4 (𝐼𝑉𝐼𝐼)
13 2nn 12315 . . . . . . . 8 2 ∈ ℕ
141, 4znhash 21496 . . . . . . . 8 (2 ∈ ℕ → (♯‘(Base‘𝑅)) = 2)
1513, 14ax-mp 5 . . . . . . 7 (♯‘(Base‘𝑅)) = 2
16 hash2 14396 . . . . . . 7 (♯‘2o) = 2
1715, 16eqtr4i 2756 . . . . . 6 (♯‘(Base‘𝑅)) = (♯‘2o)
18 2nn0 12519 . . . . . . . . 9 2 ∈ ℕ0
1915, 18eqeltri 2821 . . . . . . . 8 (♯‘(Base‘𝑅)) ∈ ℕ0
20 fvex 6907 . . . . . . . . 9 (Base‘𝑅) ∈ V
21 hashclb 14349 . . . . . . . . 9 ((Base‘𝑅) ∈ V → ((Base‘𝑅) ∈ Fin ↔ (♯‘(Base‘𝑅)) ∈ ℕ0))
2220, 21ax-mp 5 . . . . . . . 8 ((Base‘𝑅) ∈ Fin ↔ (♯‘(Base‘𝑅)) ∈ ℕ0)
2319, 22mpbir 230 . . . . . . 7 (Base‘𝑅) ∈ Fin
24 2onn 8661 . . . . . . . 8 2o ∈ ω
25 nnfi 9190 . . . . . . . 8 (2o ∈ ω → 2o ∈ Fin)
2624, 25ax-mp 5 . . . . . . 7 2o ∈ Fin
27 hashen 14338 . . . . . . 7 (((Base‘𝑅) ∈ Fin ∧ 2o ∈ Fin) → ((♯‘(Base‘𝑅)) = (♯‘2o) ↔ (Base‘𝑅) ≈ 2o))
2823, 26, 27mp2an 690 . . . . . 6 ((♯‘(Base‘𝑅)) = (♯‘2o) ↔ (Base‘𝑅) ≈ 2o)
2917, 28mpbi 229 . . . . 5 (Base‘𝑅) ≈ 2o
3029a1i 11 . . . 4 (𝐼𝑉 → (Base‘𝑅) ≈ 2o)
311zncrng 21482 . . . . . 6 (2 ∈ ℕ0𝑅 ∈ CRing)
32 crngring 20189 . . . . . 6 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
3318, 31, 32mp2b 10 . . . . 5 𝑅 ∈ Ring
344, 5ring0cl 20207 . . . . 5 (𝑅 ∈ Ring → (0g𝑅) ∈ (Base‘𝑅))
3533, 34mp1i 13 . . . 4 (𝐼𝑉 → (0g𝑅) ∈ (Base‘𝑅))
36 2on0 8501 . . . . . 6 2o ≠ ∅
37 2on 8499 . . . . . . 7 2o ∈ On
38 on0eln0 6425 . . . . . . 7 (2o ∈ On → (∅ ∈ 2o ↔ 2o ≠ ∅))
3937, 38ax-mp 5 . . . . . 6 (∅ ∈ 2o ↔ 2o ≠ ∅)
4036, 39mpbir 230 . . . . 5 ∅ ∈ 2o
4140a1i 11 . . . 4 (𝐼𝑉 → ∅ ∈ 2o)
426, 11, 12, 30, 35, 41mapfien2 9432 . . 3 (𝐼𝑉 → {𝑥 ∈ ((Base‘𝑅) ↑m 𝐼) ∣ 𝑥 finSupp (0g𝑅)} ≈ {𝑥 ∈ (2om 𝐼) ∣ 𝑥 finSupp ∅})
4310, 42eqbrtrrd 5172 . 2 (𝐼𝑉𝐵 ≈ {𝑥 ∈ (2om 𝐼) ∣ 𝑥 finSupp ∅})
4411pwfi2en 42586 . 2 (𝐼𝑉 → {𝑥 ∈ (2om 𝐼) ∣ 𝑥 finSupp ∅} ≈ (𝒫 𝐼 ∩ Fin))
45 entr 9025 . 2 ((𝐵 ≈ {𝑥 ∈ (2om 𝐼) ∣ 𝑥 finSupp ∅} ∧ {𝑥 ∈ (2om 𝐼) ∣ 𝑥 finSupp ∅} ≈ (𝒫 𝐼 ∩ Fin)) → 𝐵 ≈ (𝒫 𝐼 ∩ Fin))
4643, 44, 45syl2anc 582 1 (𝐼𝑉𝐵 ≈ (𝒫 𝐼 ∩ Fin))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1533  wcel 2098  wne 2930  {crab 3419  Vcvv 3463  cin 3944  c0 4323  𝒫 cpw 4603   class class class wbr 5148  Oncon0 6369  cfv 6547  (class class class)co 7417  ωcom 7869  2oc2o 8479  m cmap 8843  cen 8959  Fincfn 8962   finSupp cfsupp 9385  cn 12242  2c2 12297  0cn0 12502  chash 14321  Basecbs 17179  0gc0g 17420  Ringcrg 20177  CRingccrg 20178  ℤ/nczn 21432   freeLMod cfrlm 21684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5364  ax-pr 5428  ax-un 7739  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215  ax-pre-sup 11216  ax-addf 11217  ax-mulf 11218
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3965  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6499  df-fun 6549  df-fn 6550  df-f 6551  df-f1 6552  df-fo 6553  df-f1o 6554  df-fv 6555  df-riota 7373  df-ov 7420  df-oprab 7421  df-mpo 7422  df-om 7870  df-1st 7992  df-2nd 7993  df-supp 8164  df-tpos 8230  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-oadd 8489  df-er 8723  df-ec 8725  df-qs 8729  df-map 8845  df-ixp 8915  df-en 8963  df-dom 8964  df-sdom 8965  df-fin 8966  df-fsupp 9386  df-sup 9465  df-inf 9466  df-dju 9924  df-card 9962  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-div 11902  df-nn 12243  df-2 12305  df-3 12306  df-4 12307  df-5 12308  df-6 12309  df-7 12310  df-8 12311  df-9 12312  df-n0 12503  df-z 12589  df-dec 12708  df-uz 12853  df-rp 13007  df-fz 13517  df-fzo 13660  df-fl 13789  df-mod 13867  df-seq 13999  df-hash 14322  df-dvds 16231  df-struct 17115  df-sets 17132  df-slot 17150  df-ndx 17162  df-base 17180  df-ress 17209  df-plusg 17245  df-mulr 17246  df-starv 17247  df-sca 17248  df-vsca 17249  df-ip 17250  df-tset 17251  df-ple 17252  df-ds 17254  df-unif 17255  df-hom 17256  df-cco 17257  df-0g 17422  df-prds 17428  df-pws 17430  df-imas 17489  df-qus 17490  df-mgm 18599  df-sgrp 18678  df-mnd 18694  df-mhm 18739  df-grp 18897  df-minusg 18898  df-sbg 18899  df-mulg 19028  df-subg 19082  df-nsg 19083  df-eqg 19084  df-ghm 19172  df-cmn 19741  df-abl 19742  df-mgp 20079  df-rng 20097  df-ur 20126  df-ring 20179  df-cring 20180  df-oppr 20277  df-dvdsr 20300  df-rhm 20415  df-subrng 20487  df-subrg 20512  df-lmod 20749  df-lss 20820  df-lsp 20860  df-sra 21062  df-rgmod 21063  df-lidl 21108  df-rsp 21109  df-2idl 21148  df-cnfld 21284  df-zring 21377  df-zrh 21433  df-zn 21436  df-dsmm 21670  df-frlm 21685
This theorem is referenced by:  isnumbasgrplem3  42594
  Copyright terms: Public domain W3C validator
OSZAR »