![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > znhash | Structured version Visualization version GIF version |
Description: The ℤ/nℤ structure has 𝑛 elements. (Contributed by Mario Carneiro, 15-Jun-2015.) |
Ref | Expression |
---|---|
zntos.y | ⊢ 𝑌 = (ℤ/nℤ‘𝑁) |
znhash.1 | ⊢ 𝐵 = (Base‘𝑌) |
Ref | Expression |
---|---|
znhash | ⊢ (𝑁 ∈ ℕ → (♯‘𝐵) = 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnnn0 12507 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
2 | zntos.y | . . . . . 6 ⊢ 𝑌 = (ℤ/nℤ‘𝑁) | |
3 | znhash.1 | . . . . . 6 ⊢ 𝐵 = (Base‘𝑌) | |
4 | eqid 2725 | . . . . . 6 ⊢ ((ℤRHom‘𝑌) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))) = ((ℤRHom‘𝑌) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))) | |
5 | eqid 2725 | . . . . . 6 ⊢ if(𝑁 = 0, ℤ, (0..^𝑁)) = if(𝑁 = 0, ℤ, (0..^𝑁)) | |
6 | 2, 3, 4, 5 | znf1o 21487 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → ((ℤRHom‘𝑌) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))):if(𝑁 = 0, ℤ, (0..^𝑁))–1-1-onto→𝐵) |
7 | 1, 6 | syl 17 | . . . 4 ⊢ (𝑁 ∈ ℕ → ((ℤRHom‘𝑌) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))):if(𝑁 = 0, ℤ, (0..^𝑁))–1-1-onto→𝐵) |
8 | nnne0 12274 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 𝑁 ≠ 0) | |
9 | ifnefalse 4536 | . . . . 5 ⊢ (𝑁 ≠ 0 → if(𝑁 = 0, ℤ, (0..^𝑁)) = (0..^𝑁)) | |
10 | f1oeq2 6822 | . . . . 5 ⊢ (if(𝑁 = 0, ℤ, (0..^𝑁)) = (0..^𝑁) → (((ℤRHom‘𝑌) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))):if(𝑁 = 0, ℤ, (0..^𝑁))–1-1-onto→𝐵 ↔ ((ℤRHom‘𝑌) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))):(0..^𝑁)–1-1-onto→𝐵)) | |
11 | 8, 9, 10 | 3syl 18 | . . . 4 ⊢ (𝑁 ∈ ℕ → (((ℤRHom‘𝑌) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))):if(𝑁 = 0, ℤ, (0..^𝑁))–1-1-onto→𝐵 ↔ ((ℤRHom‘𝑌) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))):(0..^𝑁)–1-1-onto→𝐵)) |
12 | 7, 11 | mpbid 231 | . . 3 ⊢ (𝑁 ∈ ℕ → ((ℤRHom‘𝑌) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))):(0..^𝑁)–1-1-onto→𝐵) |
13 | ovex 7448 | . . . 4 ⊢ (0..^𝑁) ∈ V | |
14 | 13 | f1oen 8990 | . . 3 ⊢ (((ℤRHom‘𝑌) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))):(0..^𝑁)–1-1-onto→𝐵 → (0..^𝑁) ≈ 𝐵) |
15 | ensym 9020 | . . 3 ⊢ ((0..^𝑁) ≈ 𝐵 → 𝐵 ≈ (0..^𝑁)) | |
16 | hasheni 14337 | . . 3 ⊢ (𝐵 ≈ (0..^𝑁) → (♯‘𝐵) = (♯‘(0..^𝑁))) | |
17 | 12, 14, 15, 16 | 4syl 19 | . 2 ⊢ (𝑁 ∈ ℕ → (♯‘𝐵) = (♯‘(0..^𝑁))) |
18 | hashfzo0 14419 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (♯‘(0..^𝑁)) = 𝑁) | |
19 | 1, 18 | syl 17 | . 2 ⊢ (𝑁 ∈ ℕ → (♯‘(0..^𝑁)) = 𝑁) |
20 | 17, 19 | eqtrd 2765 | 1 ⊢ (𝑁 ∈ ℕ → (♯‘𝐵) = 𝑁) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1533 ∈ wcel 2098 ≠ wne 2930 ifcif 4524 class class class wbr 5143 ↾ cres 5674 –1-1-onto→wf1o 6541 ‘cfv 6542 (class class class)co 7415 ≈ cen 8957 0cc0 11136 ℕcn 12240 ℕ0cn0 12500 ℤcz 12586 ..^cfzo 13657 ♯chash 14319 Basecbs 17177 ℤRHomczrh 21427 ℤ/nℤczn 21430 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7737 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 ax-pre-sup 11214 ax-addf 11215 ax-mulf 11216 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3960 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-om 7868 df-1st 7989 df-2nd 7990 df-tpos 8228 df-frecs 8283 df-wrecs 8314 df-recs 8388 df-rdg 8427 df-1o 8483 df-er 8721 df-ec 8723 df-qs 8727 df-map 8843 df-en 8961 df-dom 8962 df-sdom 8963 df-fin 8964 df-sup 9463 df-inf 9464 df-card 9960 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11474 df-neg 11475 df-div 11900 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12501 df-z 12587 df-dec 12706 df-uz 12851 df-rp 13005 df-fz 13515 df-fzo 13658 df-fl 13787 df-mod 13865 df-seq 13997 df-hash 14320 df-dvds 16229 df-struct 17113 df-sets 17130 df-slot 17148 df-ndx 17160 df-base 17178 df-ress 17207 df-plusg 17243 df-mulr 17244 df-starv 17245 df-sca 17246 df-vsca 17247 df-ip 17248 df-tset 17249 df-ple 17250 df-ds 17252 df-unif 17253 df-0g 17420 df-imas 17487 df-qus 17488 df-mgm 18597 df-sgrp 18676 df-mnd 18692 df-mhm 18737 df-grp 18895 df-minusg 18896 df-sbg 18897 df-mulg 19026 df-subg 19080 df-nsg 19081 df-eqg 19082 df-ghm 19170 df-cmn 19739 df-abl 19740 df-mgp 20077 df-rng 20095 df-ur 20124 df-ring 20177 df-cring 20178 df-oppr 20275 df-dvdsr 20298 df-rhm 20413 df-subrng 20485 df-subrg 20510 df-lmod 20747 df-lss 20818 df-lsp 20858 df-sra 21060 df-rgmod 21061 df-lidl 21106 df-rsp 21107 df-2idl 21146 df-cnfld 21282 df-zring 21375 df-zrh 21431 df-zn 21434 |
This theorem is referenced by: znfi 21495 znfld 21496 znidomb 21497 frlmpwfi 42586 isnumbasgrplem3 42593 cznnring 47435 |
Copyright terms: Public domain | W3C validator |