![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hdmapevec | Structured version Visualization version GIF version |
Description: Value of map from vectors to functionals at the reference vector 𝐸. (Contributed by NM, 16-May-2015.) |
Ref | Expression |
---|---|
hdmapevec.h | ⊢ 𝐻 = (LHyp‘𝐾) |
hdmapevec.e | ⊢ 𝐸 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 |
hdmapevec.j | ⊢ 𝐽 = ((HVMap‘𝐾)‘𝑊) |
hdmapevec.s | ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) |
hdmapevec.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
Ref | Expression |
---|---|
hdmapevec | ⊢ (𝜑 → (𝑆‘𝐸) = (𝐽‘𝐸)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hdmapevec.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | eqid 2728 | . . 3 ⊢ ((DVecH‘𝐾)‘𝑊) = ((DVecH‘𝐾)‘𝑊) | |
3 | eqid 2728 | . . 3 ⊢ (Base‘((DVecH‘𝐾)‘𝑊)) = (Base‘((DVecH‘𝐾)‘𝑊)) | |
4 | eqid 2728 | . . 3 ⊢ (LSpan‘((DVecH‘𝐾)‘𝑊)) = (LSpan‘((DVecH‘𝐾)‘𝑊)) | |
5 | hdmapevec.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
6 | eqid 2728 | . . . . 5 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
7 | eqid 2728 | . . . . 5 ⊢ ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊) | |
8 | eqid 2728 | . . . . 5 ⊢ (0g‘((DVecH‘𝐾)‘𝑊)) = (0g‘((DVecH‘𝐾)‘𝑊)) | |
9 | hdmapevec.e | . . . . 5 ⊢ 𝐸 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 | |
10 | 1, 6, 7, 2, 3, 8, 9, 5 | dvheveccl 40585 | . . . 4 ⊢ (𝜑 → 𝐸 ∈ ((Base‘((DVecH‘𝐾)‘𝑊)) ∖ {(0g‘((DVecH‘𝐾)‘𝑊))})) |
11 | 10 | eldifad 3959 | . . 3 ⊢ (𝜑 → 𝐸 ∈ (Base‘((DVecH‘𝐾)‘𝑊))) |
12 | 1, 2, 3, 4, 5, 11 | dvh2dim 40918 | . 2 ⊢ (𝜑 → ∃𝑧 ∈ (Base‘((DVecH‘𝐾)‘𝑊)) ¬ 𝑧 ∈ ((LSpan‘((DVecH‘𝐾)‘𝑊))‘{𝐸})) |
13 | hdmapevec.j | . . . 4 ⊢ 𝐽 = ((HVMap‘𝐾)‘𝑊) | |
14 | hdmapevec.s | . . . 4 ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) | |
15 | 5 | 3ad2ant1 1131 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ (Base‘((DVecH‘𝐾)‘𝑊)) ∧ ¬ 𝑧 ∈ ((LSpan‘((DVecH‘𝐾)‘𝑊))‘{𝐸})) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
16 | eqid 2728 | . . . 4 ⊢ ((LCDual‘𝐾)‘𝑊) = ((LCDual‘𝐾)‘𝑊) | |
17 | eqid 2728 | . . . 4 ⊢ (Base‘((LCDual‘𝐾)‘𝑊)) = (Base‘((LCDual‘𝐾)‘𝑊)) | |
18 | eqid 2728 | . . . 4 ⊢ ((HDMap1‘𝐾)‘𝑊) = ((HDMap1‘𝐾)‘𝑊) | |
19 | simp2 1135 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ (Base‘((DVecH‘𝐾)‘𝑊)) ∧ ¬ 𝑧 ∈ ((LSpan‘((DVecH‘𝐾)‘𝑊))‘{𝐸})) → 𝑧 ∈ (Base‘((DVecH‘𝐾)‘𝑊))) | |
20 | ssid 4002 | . . . . . . . 8 ⊢ ((LSpan‘((DVecH‘𝐾)‘𝑊))‘{𝐸}) ⊆ ((LSpan‘((DVecH‘𝐾)‘𝑊))‘{𝐸}) | |
21 | 20, 20 | unssi 4185 | . . . . . . 7 ⊢ (((LSpan‘((DVecH‘𝐾)‘𝑊))‘{𝐸}) ∪ ((LSpan‘((DVecH‘𝐾)‘𝑊))‘{𝐸})) ⊆ ((LSpan‘((DVecH‘𝐾)‘𝑊))‘{𝐸}) |
22 | 21 | sseli 3976 | . . . . . 6 ⊢ (𝑧 ∈ (((LSpan‘((DVecH‘𝐾)‘𝑊))‘{𝐸}) ∪ ((LSpan‘((DVecH‘𝐾)‘𝑊))‘{𝐸})) → 𝑧 ∈ ((LSpan‘((DVecH‘𝐾)‘𝑊))‘{𝐸})) |
23 | 22 | con3i 154 | . . . . 5 ⊢ (¬ 𝑧 ∈ ((LSpan‘((DVecH‘𝐾)‘𝑊))‘{𝐸}) → ¬ 𝑧 ∈ (((LSpan‘((DVecH‘𝐾)‘𝑊))‘{𝐸}) ∪ ((LSpan‘((DVecH‘𝐾)‘𝑊))‘{𝐸}))) |
24 | 23 | 3ad2ant3 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ (Base‘((DVecH‘𝐾)‘𝑊)) ∧ ¬ 𝑧 ∈ ((LSpan‘((DVecH‘𝐾)‘𝑊))‘{𝐸})) → ¬ 𝑧 ∈ (((LSpan‘((DVecH‘𝐾)‘𝑊))‘{𝐸}) ∪ ((LSpan‘((DVecH‘𝐾)‘𝑊))‘{𝐸}))) |
25 | 1, 9, 13, 14, 15, 2, 3, 4, 16, 17, 18, 19, 24 | hdmapeveclem 41307 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ (Base‘((DVecH‘𝐾)‘𝑊)) ∧ ¬ 𝑧 ∈ ((LSpan‘((DVecH‘𝐾)‘𝑊))‘{𝐸})) → (𝑆‘𝐸) = (𝐽‘𝐸)) |
26 | 25 | rexlimdv3a 3156 | . 2 ⊢ (𝜑 → (∃𝑧 ∈ (Base‘((DVecH‘𝐾)‘𝑊)) ¬ 𝑧 ∈ ((LSpan‘((DVecH‘𝐾)‘𝑊))‘{𝐸}) → (𝑆‘𝐸) = (𝐽‘𝐸))) |
27 | 12, 26 | mpd 15 | 1 ⊢ (𝜑 → (𝑆‘𝐸) = (𝐽‘𝐸)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 ∃wrex 3067 ∪ cun 3945 {csn 4629 〈cop 4635 I cid 5575 ↾ cres 5680 ‘cfv 6548 Basecbs 17180 0gc0g 17421 LSpanclspn 20855 HLchlt 38822 LHypclh 39457 LTrncltrn 39574 DVecHcdvh 40551 LCDualclcd 41059 HVMapchvm 41229 HDMap1chdma1 41264 HDMapchdma 41265 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11195 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 ax-pre-mulgt0 11216 ax-riotaBAD 38425 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-ot 4638 df-uni 4909 df-int 4950 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-of 7685 df-om 7871 df-1st 7993 df-2nd 7994 df-tpos 8232 df-undef 8279 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8725 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-pnf 11281 df-mnf 11282 df-xr 11283 df-ltxr 11284 df-le 11285 df-sub 11477 df-neg 11478 df-nn 12244 df-2 12306 df-3 12307 df-4 12308 df-5 12309 df-6 12310 df-n0 12504 df-z 12590 df-uz 12854 df-fz 13518 df-struct 17116 df-sets 17133 df-slot 17151 df-ndx 17163 df-base 17181 df-ress 17210 df-plusg 17246 df-mulr 17247 df-sca 17249 df-vsca 17250 df-0g 17423 df-mre 17566 df-mrc 17567 df-acs 17569 df-proset 18287 df-poset 18305 df-plt 18322 df-lub 18338 df-glb 18339 df-join 18340 df-meet 18341 df-p0 18417 df-p1 18418 df-lat 18424 df-clat 18491 df-mgm 18600 df-sgrp 18679 df-mnd 18695 df-submnd 18741 df-grp 18893 df-minusg 18894 df-sbg 18895 df-subg 19078 df-cntz 19268 df-oppg 19297 df-lsm 19591 df-cmn 19737 df-abl 19738 df-mgp 20075 df-rng 20093 df-ur 20122 df-ring 20175 df-oppr 20273 df-dvdsr 20296 df-unit 20297 df-invr 20327 df-dvr 20340 df-drng 20626 df-lmod 20745 df-lss 20816 df-lsp 20856 df-lvec 20988 df-lsatoms 38448 df-lshyp 38449 df-lcv 38491 df-lfl 38530 df-lkr 38558 df-ldual 38596 df-oposet 38648 df-ol 38650 df-oml 38651 df-covers 38738 df-ats 38739 df-atl 38770 df-cvlat 38794 df-hlat 38823 df-llines 38971 df-lplanes 38972 df-lvols 38973 df-lines 38974 df-psubsp 38976 df-pmap 38977 df-padd 39269 df-lhyp 39461 df-laut 39462 df-ldil 39577 df-ltrn 39578 df-trl 39632 df-tgrp 40216 df-tendo 40228 df-edring 40230 df-dveca 40476 df-disoa 40502 df-dvech 40552 df-dib 40612 df-dic 40646 df-dih 40702 df-doch 40821 df-djh 40868 df-lcdual 41060 df-mapd 41098 df-hvmap 41230 df-hdmap1 41266 df-hdmap 41267 |
This theorem is referenced by: hdmapevec2 41309 hdmapval3lemN 41310 |
Copyright terms: Public domain | W3C validator |