![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hdmapevec2 | Structured version Visualization version GIF version |
Description: The inner product of the reference vector 𝐸 with itself is nonzero. This shows the inner product condition in the proof of Theorem 3.6 of [Holland95] p. 14 line 32, [ e , e ] ≠ 0 is satisfied. TODO: remove redundant hypothesis hdmapevec.j. (Contributed by NM, 1-Jun-2015.) |
Ref | Expression |
---|---|
hdmapevec.h | ⊢ 𝐻 = (LHyp‘𝐾) |
hdmapevec.e | ⊢ 𝐸 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 |
hdmapevec.j | ⊢ 𝐽 = ((HVMap‘𝐾)‘𝑊) |
hdmapevec.s | ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) |
hdmapevec.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
hdmapevec2.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
hdmapevec2.r | ⊢ 𝑅 = (Scalar‘𝑈) |
hdmapevec2.i | ⊢ 1 = (1r‘𝑅) |
Ref | Expression |
---|---|
hdmapevec2 | ⊢ (𝜑 → ((𝑆‘𝐸)‘𝐸) = 1 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hdmapevec.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | hdmapevec.e | . . . . 5 ⊢ 𝐸 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 | |
3 | hdmapevec.j | . . . . 5 ⊢ 𝐽 = ((HVMap‘𝐾)‘𝑊) | |
4 | hdmapevec.s | . . . . 5 ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) | |
5 | hdmapevec.k | . . . . 5 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
6 | 1, 2, 3, 4, 5 | hdmapevec 41340 | . . . 4 ⊢ (𝜑 → (𝑆‘𝐸) = (𝐽‘𝐸)) |
7 | hdmapevec2.u | . . . . 5 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
8 | eqid 2728 | . . . . 5 ⊢ ((ocH‘𝐾)‘𝑊) = ((ocH‘𝐾)‘𝑊) | |
9 | eqid 2728 | . . . . 5 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
10 | eqid 2728 | . . . . 5 ⊢ (+g‘𝑈) = (+g‘𝑈) | |
11 | eqid 2728 | . . . . 5 ⊢ ( ·𝑠 ‘𝑈) = ( ·𝑠 ‘𝑈) | |
12 | eqid 2728 | . . . . 5 ⊢ (0g‘𝑈) = (0g‘𝑈) | |
13 | hdmapevec2.r | . . . . 5 ⊢ 𝑅 = (Scalar‘𝑈) | |
14 | eqid 2728 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
15 | eqid 2728 | . . . . . 6 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
16 | eqid 2728 | . . . . . 6 ⊢ ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊) | |
17 | 1, 15, 16, 7, 9, 12, 2, 5 | dvheveccl 40617 | . . . . 5 ⊢ (𝜑 → 𝐸 ∈ ((Base‘𝑈) ∖ {(0g‘𝑈)})) |
18 | 1, 7, 8, 9, 10, 11, 12, 13, 14, 3, 5, 17 | hvmapval 41265 | . . . 4 ⊢ (𝜑 → (𝐽‘𝐸) = (𝑣 ∈ (Base‘𝑈) ↦ (℩𝑘 ∈ (Base‘𝑅)∃𝑤 ∈ (((ocH‘𝐾)‘𝑊)‘{𝐸})𝑣 = (𝑤(+g‘𝑈)(𝑘( ·𝑠 ‘𝑈)𝐸))))) |
19 | 6, 18 | eqtrd 2768 | . . 3 ⊢ (𝜑 → (𝑆‘𝐸) = (𝑣 ∈ (Base‘𝑈) ↦ (℩𝑘 ∈ (Base‘𝑅)∃𝑤 ∈ (((ocH‘𝐾)‘𝑊)‘{𝐸})𝑣 = (𝑤(+g‘𝑈)(𝑘( ·𝑠 ‘𝑈)𝐸))))) |
20 | 19 | fveq1d 6904 | . 2 ⊢ (𝜑 → ((𝑆‘𝐸)‘𝐸) = ((𝑣 ∈ (Base‘𝑈) ↦ (℩𝑘 ∈ (Base‘𝑅)∃𝑤 ∈ (((ocH‘𝐾)‘𝑊)‘{𝐸})𝑣 = (𝑤(+g‘𝑈)(𝑘( ·𝑠 ‘𝑈)𝐸))))‘𝐸)) |
21 | hdmapevec2.i | . . 3 ⊢ 1 = (1r‘𝑅) | |
22 | eqid 2728 | . . 3 ⊢ (𝑣 ∈ (Base‘𝑈) ↦ (℩𝑘 ∈ (Base‘𝑅)∃𝑤 ∈ (((ocH‘𝐾)‘𝑊)‘{𝐸})𝑣 = (𝑤(+g‘𝑈)(𝑘( ·𝑠 ‘𝑈)𝐸)))) = (𝑣 ∈ (Base‘𝑈) ↦ (℩𝑘 ∈ (Base‘𝑅)∃𝑤 ∈ (((ocH‘𝐾)‘𝑊)‘{𝐸})𝑣 = (𝑤(+g‘𝑈)(𝑘( ·𝑠 ‘𝑈)𝐸)))) | |
23 | 1, 8, 7, 9, 10, 11, 12, 13, 14, 21, 5, 17, 22 | dochfl1 40981 | . 2 ⊢ (𝜑 → ((𝑣 ∈ (Base‘𝑈) ↦ (℩𝑘 ∈ (Base‘𝑅)∃𝑤 ∈ (((ocH‘𝐾)‘𝑊)‘{𝐸})𝑣 = (𝑤(+g‘𝑈)(𝑘( ·𝑠 ‘𝑈)𝐸))))‘𝐸) = 1 ) |
24 | 20, 23 | eqtrd 2768 | 1 ⊢ (𝜑 → ((𝑆‘𝐸)‘𝐸) = 1 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∃wrex 3067 {csn 4632 〈cop 4638 ↦ cmpt 5235 I cid 5579 ↾ cres 5684 ‘cfv 6553 ℩crio 7381 (class class class)co 7426 Basecbs 17187 +gcplusg 17240 Scalarcsca 17243 ·𝑠 cvsca 17244 0gc0g 17428 1rcur 20128 HLchlt 38854 LHypclh 39489 LTrncltrn 39606 DVecHcdvh 40583 ocHcoch 40852 HVMapchvm 41261 HDMapchdma 41297 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 ax-riotaBAD 38457 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-tp 4637 df-op 4639 df-ot 4641 df-uni 4913 df-int 4954 df-iun 5002 df-iin 5003 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-of 7691 df-om 7877 df-1st 7999 df-2nd 8000 df-tpos 8238 df-undef 8285 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-1o 8493 df-er 8731 df-map 8853 df-en 8971 df-dom 8972 df-sdom 8973 df-fin 8974 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-nn 12251 df-2 12313 df-3 12314 df-4 12315 df-5 12316 df-6 12317 df-n0 12511 df-z 12597 df-uz 12861 df-fz 13525 df-struct 17123 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17188 df-ress 17217 df-plusg 17253 df-mulr 17254 df-sca 17256 df-vsca 17257 df-0g 17430 df-mre 17573 df-mrc 17574 df-acs 17576 df-proset 18294 df-poset 18312 df-plt 18329 df-lub 18345 df-glb 18346 df-join 18347 df-meet 18348 df-p0 18424 df-p1 18425 df-lat 18431 df-clat 18498 df-mgm 18607 df-sgrp 18686 df-mnd 18702 df-submnd 18748 df-grp 18900 df-minusg 18901 df-sbg 18902 df-subg 19085 df-cntz 19275 df-oppg 19304 df-lsm 19598 df-cmn 19744 df-abl 19745 df-mgp 20082 df-rng 20100 df-ur 20129 df-ring 20182 df-oppr 20280 df-dvdsr 20303 df-unit 20304 df-invr 20334 df-dvr 20347 df-drng 20633 df-lmod 20752 df-lss 20823 df-lsp 20863 df-lvec 20995 df-lsatoms 38480 df-lshyp 38481 df-lcv 38523 df-lfl 38562 df-lkr 38590 df-ldual 38628 df-oposet 38680 df-ol 38682 df-oml 38683 df-covers 38770 df-ats 38771 df-atl 38802 df-cvlat 38826 df-hlat 38855 df-llines 39003 df-lplanes 39004 df-lvols 39005 df-lines 39006 df-psubsp 39008 df-pmap 39009 df-padd 39301 df-lhyp 39493 df-laut 39494 df-ldil 39609 df-ltrn 39610 df-trl 39664 df-tgrp 40248 df-tendo 40260 df-edring 40262 df-dveca 40508 df-disoa 40534 df-dvech 40584 df-dib 40644 df-dic 40678 df-dih 40734 df-doch 40853 df-djh 40900 df-lcdual 41092 df-mapd 41130 df-hvmap 41262 df-hdmap1 41298 df-hdmap 41299 |
This theorem is referenced by: hdmapinvlem3 41425 hdmapinvlem4 41426 hdmapglem7b 41433 |
Copyright terms: Public domain | W3C validator |