![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imasvalstr | Structured version Visualization version GIF version |
Description: An image structure value is a structure. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Mario Carneiro, 30-Apr-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) |
Ref | Expression |
---|---|
imasvalstr.u | ⊢ 𝑈 = (({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) ∪ {〈(TopSet‘ndx), 𝑂〉, 〈(le‘ndx), 𝐿〉, 〈(dist‘ndx), 𝐷〉}) |
Ref | Expression |
---|---|
imasvalstr | ⊢ 𝑈 Struct 〈1, ;12〉 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imasvalstr.u | . 2 ⊢ 𝑈 = (({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) ∪ {〈(TopSet‘ndx), 𝑂〉, 〈(le‘ndx), 𝐿〉, 〈(dist‘ndx), 𝐷〉}) | |
2 | eqid 2728 | . . . 4 ⊢ ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) | |
3 | 2 | ipsstr 17316 | . . 3 ⊢ ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) Struct 〈1, 8〉 |
4 | 9nn 12340 | . . . 4 ⊢ 9 ∈ ℕ | |
5 | tsetndx 17332 | . . . 4 ⊢ (TopSet‘ndx) = 9 | |
6 | 9lt10 12838 | . . . 4 ⊢ 9 < ;10 | |
7 | 10nn 12723 | . . . 4 ⊢ ;10 ∈ ℕ | |
8 | plendx 17346 | . . . 4 ⊢ (le‘ndx) = ;10 | |
9 | 1nn0 12518 | . . . . 5 ⊢ 1 ∈ ℕ0 | |
10 | 0nn0 12517 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
11 | 2nn 12315 | . . . . 5 ⊢ 2 ∈ ℕ | |
12 | 2pos 12345 | . . . . 5 ⊢ 0 < 2 | |
13 | 9, 10, 11, 12 | declt 12735 | . . . 4 ⊢ ;10 < ;12 |
14 | 9, 11 | decnncl 12727 | . . . 4 ⊢ ;12 ∈ ℕ |
15 | dsndx 17365 | . . . 4 ⊢ (dist‘ndx) = ;12 | |
16 | 4, 5, 6, 7, 8, 13, 14, 15 | strle3 17128 | . . 3 ⊢ {〈(TopSet‘ndx), 𝑂〉, 〈(le‘ndx), 𝐿〉, 〈(dist‘ndx), 𝐷〉} Struct 〈9, ;12〉 |
17 | 8lt9 12441 | . . 3 ⊢ 8 < 9 | |
18 | 3, 16, 17 | strleun 17125 | . 2 ⊢ (({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) ∪ {〈(TopSet‘ndx), 𝑂〉, 〈(le‘ndx), 𝐿〉, 〈(dist‘ndx), 𝐷〉}) Struct 〈1, ;12〉 |
19 | 1, 18 | eqbrtri 5169 | 1 ⊢ 𝑈 Struct 〈1, ;12〉 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 ∪ cun 3945 {ctp 4633 〈cop 4635 class class class wbr 5148 ‘cfv 6548 0cc0 11138 1c1 11139 2c2 12297 8c8 12303 9c9 12304 ;cdc 12707 Struct cstr 17114 ndxcnx 17161 Basecbs 17179 +gcplusg 17232 .rcmulr 17233 Scalarcsca 17235 ·𝑠 cvsca 17236 ·𝑖cip 17237 TopSetcts 17238 lecple 17239 distcds 17241 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-1st 7993 df-2nd 7994 df-frecs 8286 df-wrecs 8317 df-recs 8391 df-rdg 8430 df-1o 8486 df-er 8724 df-en 8964 df-dom 8965 df-sdom 8966 df-fin 8967 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-nn 12243 df-2 12305 df-3 12306 df-4 12307 df-5 12308 df-6 12309 df-7 12310 df-8 12311 df-9 12312 df-n0 12503 df-z 12589 df-dec 12708 df-uz 12853 df-fz 13517 df-struct 17115 df-slot 17150 df-ndx 17162 df-base 17180 df-plusg 17245 df-mulr 17246 df-sca 17248 df-vsca 17249 df-ip 17250 df-tset 17251 df-ple 17252 df-ds 17254 |
This theorem is referenced by: prdsvalstr 17433 imasbas 17493 imasds 17494 imasplusg 17498 imasmulr 17499 imassca 17500 imasvsca 17501 imasip 17502 imastset 17503 imasle 17504 rlocbas 32981 rlocaddval 32982 rlocmulval 32983 |
Copyright terms: Public domain | W3C validator |