![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > plendx | Structured version Visualization version GIF version |
Description: Index value of the df-ple 17253 slot. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by AV, 9-Sep-2021.) (New usage is discouraged.) |
Ref | Expression |
---|---|
plendx | ⊢ (le‘ndx) = ;10 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ple 17253 | . 2 ⊢ le = Slot ;10 | |
2 | 10nn 12724 | . 2 ⊢ ;10 ∈ ℕ | |
3 | 1, 2 | ndxarg 17165 | 1 ⊢ (le‘ndx) = ;10 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 ‘cfv 6548 0cc0 11139 1c1 11140 ;cdc 12708 ndxcnx 17162 lecple 17240 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11195 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-ov 7423 df-om 7871 df-2nd 7994 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11281 df-mnf 11282 df-ltxr 11284 df-nn 12244 df-2 12306 df-3 12307 df-4 12308 df-5 12309 df-6 12310 df-7 12311 df-8 12312 df-9 12313 df-dec 12709 df-slot 17151 df-ndx 17163 df-ple 17253 |
This theorem is referenced by: plendxnn 17349 basendxltplendx 17350 plendxnplusgndx 17352 plendxnmulrndx 17353 plendxnscandx 17354 plendxnvscandx 17355 slotsdifplendx 17356 otpsstr 17357 plendxnocndx 17365 slotsdifdsndx 17375 slotsdifunifndx 17382 odrngstr 17384 slotsdifplendx2 17398 imasvalstr 17433 odubasOLD 18284 ipostr 18521 cnfldstr 21281 cnfldstrOLD 21296 cnfldfunALTOLDOLD 21308 znbaslemOLD 21469 thlleOLD 21631 opsrbaslemOLD 21988 idlsrgstr 33226 prstclevalOLD 48075 |
Copyright terms: Public domain | W3C validator |