Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lfl1dim Structured version   Visualization version   GIF version

Theorem lfl1dim 38593
Description: Equivalent expressions for a 1-dim subspace (ray) of functionals. (Contributed by NM, 24-Oct-2014.)
Hypotheses
Ref Expression
lfl1dim.v 𝑉 = (Base‘𝑊)
lfl1dim.d 𝐷 = (Scalar‘𝑊)
lfl1dim.f 𝐹 = (LFnl‘𝑊)
lfl1dim.l 𝐿 = (LKer‘𝑊)
lfl1dim.k 𝐾 = (Base‘𝐷)
lfl1dim.t · = (.r𝐷)
lfl1dim.w (𝜑𝑊 ∈ LVec)
lfl1dim.g (𝜑𝐺𝐹)
Assertion
Ref Expression
lfl1dim (𝜑 → {𝑔𝐹 ∣ (𝐿𝐺) ⊆ (𝐿𝑔)} = {𝑔 ∣ ∃𝑘𝐾 𝑔 = (𝐺f · (𝑉 × {𝑘}))})
Distinct variable groups:   𝐷,𝑘   𝑘,𝐹   𝑘,𝐺   𝑘,𝐾   𝑘,𝐿   𝑘,𝑉   𝑘,𝑊   𝑔,𝑘,𝜑   · ,𝑘
Allowed substitution hints:   𝐷(𝑔)   · (𝑔)   𝐹(𝑔)   𝐺(𝑔)   𝐾(𝑔)   𝐿(𝑔)   𝑉(𝑔)   𝑊(𝑔)

Proof of Theorem lfl1dim
StepHypRef Expression
1 df-rab 3430 . 2 {𝑔𝐹 ∣ (𝐿𝐺) ⊆ (𝐿𝑔)} = {𝑔 ∣ (𝑔𝐹 ∧ (𝐿𝐺) ⊆ (𝐿𝑔))}
2 lfl1dim.w . . . . . . . . . . . 12 (𝜑𝑊 ∈ LVec)
3 lveclmod 20991 . . . . . . . . . . . 12 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
42, 3syl 17 . . . . . . . . . . 11 (𝜑𝑊 ∈ LMod)
5 lfl1dim.d . . . . . . . . . . . 12 𝐷 = (Scalar‘𝑊)
6 lfl1dim.k . . . . . . . . . . . 12 𝐾 = (Base‘𝐷)
7 eqid 2728 . . . . . . . . . . . 12 (0g𝐷) = (0g𝐷)
85, 6, 7lmod0cl 20771 . . . . . . . . . . 11 (𝑊 ∈ LMod → (0g𝐷) ∈ 𝐾)
94, 8syl 17 . . . . . . . . . 10 (𝜑 → (0g𝐷) ∈ 𝐾)
109ad2antrr 725 . . . . . . . . 9 (((𝜑𝑔𝐹) ∧ 𝑔 = (𝑉 × {(0g𝐷)})) → (0g𝐷) ∈ 𝐾)
11 simpr 484 . . . . . . . . . 10 (((𝜑𝑔𝐹) ∧ 𝑔 = (𝑉 × {(0g𝐷)})) → 𝑔 = (𝑉 × {(0g𝐷)}))
12 lfl1dim.v . . . . . . . . . . 11 𝑉 = (Base‘𝑊)
13 lfl1dim.f . . . . . . . . . . 11 𝐹 = (LFnl‘𝑊)
14 lfl1dim.t . . . . . . . . . . 11 · = (.r𝐷)
154ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑔𝐹) ∧ 𝑔 = (𝑉 × {(0g𝐷)})) → 𝑊 ∈ LMod)
16 lfl1dim.g . . . . . . . . . . . 12 (𝜑𝐺𝐹)
1716ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑔𝐹) ∧ 𝑔 = (𝑉 × {(0g𝐷)})) → 𝐺𝐹)
1812, 5, 13, 6, 14, 7, 15, 17lfl0sc 38554 . . . . . . . . . 10 (((𝜑𝑔𝐹) ∧ 𝑔 = (𝑉 × {(0g𝐷)})) → (𝐺f · (𝑉 × {(0g𝐷)})) = (𝑉 × {(0g𝐷)}))
1911, 18eqtr4d 2771 . . . . . . . . 9 (((𝜑𝑔𝐹) ∧ 𝑔 = (𝑉 × {(0g𝐷)})) → 𝑔 = (𝐺f · (𝑉 × {(0g𝐷)})))
20 sneq 4639 . . . . . . . . . . . 12 (𝑘 = (0g𝐷) → {𝑘} = {(0g𝐷)})
2120xpeq2d 5708 . . . . . . . . . . 11 (𝑘 = (0g𝐷) → (𝑉 × {𝑘}) = (𝑉 × {(0g𝐷)}))
2221oveq2d 7436 . . . . . . . . . 10 (𝑘 = (0g𝐷) → (𝐺f · (𝑉 × {𝑘})) = (𝐺f · (𝑉 × {(0g𝐷)})))
2322rspceeqv 3631 . . . . . . . . 9 (((0g𝐷) ∈ 𝐾𝑔 = (𝐺f · (𝑉 × {(0g𝐷)}))) → ∃𝑘𝐾 𝑔 = (𝐺f · (𝑉 × {𝑘})))
2410, 19, 23syl2anc 583 . . . . . . . 8 (((𝜑𝑔𝐹) ∧ 𝑔 = (𝑉 × {(0g𝐷)})) → ∃𝑘𝐾 𝑔 = (𝐺f · (𝑉 × {𝑘})))
2524a1d 25 . . . . . . 7 (((𝜑𝑔𝐹) ∧ 𝑔 = (𝑉 × {(0g𝐷)})) → ((𝐿𝐺) ⊆ (𝐿𝑔) → ∃𝑘𝐾 𝑔 = (𝐺f · (𝑉 × {𝑘}))))
269ad3antrrr 729 . . . . . . . . 9 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → (0g𝐷) ∈ 𝐾)
27 lfl1dim.l . . . . . . . . . . . . 13 𝐿 = (LKer‘𝑊)
284ad3antrrr 729 . . . . . . . . . . . . 13 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → 𝑊 ∈ LMod)
29 simpllr 775 . . . . . . . . . . . . 13 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → 𝑔𝐹)
3012, 13, 27, 28, 29lkrssv 38568 . . . . . . . . . . . 12 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → (𝐿𝑔) ⊆ 𝑉)
314adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑔𝐹) → 𝑊 ∈ LMod)
3216adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑔𝐹) → 𝐺𝐹)
335, 7, 12, 13, 27lkr0f 38566 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → ((𝐿𝐺) = 𝑉𝐺 = (𝑉 × {(0g𝐷)})))
3431, 32, 33syl2anc 583 . . . . . . . . . . . . . . 15 ((𝜑𝑔𝐹) → ((𝐿𝐺) = 𝑉𝐺 = (𝑉 × {(0g𝐷)})))
3534biimpar 477 . . . . . . . . . . . . . 14 (((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) → (𝐿𝐺) = 𝑉)
3635sseq1d 4011 . . . . . . . . . . . . 13 (((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) → ((𝐿𝐺) ⊆ (𝐿𝑔) ↔ 𝑉 ⊆ (𝐿𝑔)))
3736biimpa 476 . . . . . . . . . . . 12 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → 𝑉 ⊆ (𝐿𝑔))
3830, 37eqssd 3997 . . . . . . . . . . 11 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → (𝐿𝑔) = 𝑉)
395, 7, 12, 13, 27lkr0f 38566 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ 𝑔𝐹) → ((𝐿𝑔) = 𝑉𝑔 = (𝑉 × {(0g𝐷)})))
4028, 29, 39syl2anc 583 . . . . . . . . . . 11 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → ((𝐿𝑔) = 𝑉𝑔 = (𝑉 × {(0g𝐷)})))
4138, 40mpbid 231 . . . . . . . . . 10 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → 𝑔 = (𝑉 × {(0g𝐷)}))
4216ad3antrrr 729 . . . . . . . . . . 11 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → 𝐺𝐹)
4312, 5, 13, 6, 14, 7, 28, 42lfl0sc 38554 . . . . . . . . . 10 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → (𝐺f · (𝑉 × {(0g𝐷)})) = (𝑉 × {(0g𝐷)}))
4441, 43eqtr4d 2771 . . . . . . . . 9 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → 𝑔 = (𝐺f · (𝑉 × {(0g𝐷)})))
4526, 44, 23syl2anc 583 . . . . . . . 8 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → ∃𝑘𝐾 𝑔 = (𝐺f · (𝑉 × {𝑘})))
4645ex 412 . . . . . . 7 (((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) → ((𝐿𝐺) ⊆ (𝐿𝑔) → ∃𝑘𝐾 𝑔 = (𝐺f · (𝑉 × {𝑘}))))
47 eqid 2728 . . . . . . . . 9 (LSHyp‘𝑊) = (LSHyp‘𝑊)
482ad2antrr 725 . . . . . . . . 9 (((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) → 𝑊 ∈ LVec)
4916ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) → 𝐺𝐹)
50 simprr 772 . . . . . . . . . 10 (((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) → 𝐺 ≠ (𝑉 × {(0g𝐷)}))
5112, 5, 7, 47, 13, 27lkrshp 38577 . . . . . . . . . 10 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × {(0g𝐷)})) → (𝐿𝐺) ∈ (LSHyp‘𝑊))
5248, 49, 50, 51syl3anc 1369 . . . . . . . . 9 (((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) → (𝐿𝐺) ∈ (LSHyp‘𝑊))
53 simplr 768 . . . . . . . . . 10 (((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) → 𝑔𝐹)
54 simprl 770 . . . . . . . . . 10 (((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) → 𝑔 ≠ (𝑉 × {(0g𝐷)}))
5512, 5, 7, 47, 13, 27lkrshp 38577 . . . . . . . . . 10 ((𝑊 ∈ LVec ∧ 𝑔𝐹𝑔 ≠ (𝑉 × {(0g𝐷)})) → (𝐿𝑔) ∈ (LSHyp‘𝑊))
5648, 53, 54, 55syl3anc 1369 . . . . . . . . 9 (((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) → (𝐿𝑔) ∈ (LSHyp‘𝑊))
5747, 48, 52, 56lshpcmp 38460 . . . . . . . 8 (((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) → ((𝐿𝐺) ⊆ (𝐿𝑔) ↔ (𝐿𝐺) = (𝐿𝑔)))
582ad3antrrr 729 . . . . . . . . . 10 ((((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) ∧ (𝐿𝐺) = (𝐿𝑔)) → 𝑊 ∈ LVec)
5916ad3antrrr 729 . . . . . . . . . 10 ((((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) ∧ (𝐿𝐺) = (𝐿𝑔)) → 𝐺𝐹)
60 simpllr 775 . . . . . . . . . 10 ((((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) ∧ (𝐿𝐺) = (𝐿𝑔)) → 𝑔𝐹)
61 simpr 484 . . . . . . . . . 10 ((((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) ∧ (𝐿𝐺) = (𝐿𝑔)) → (𝐿𝐺) = (𝐿𝑔))
625, 6, 14, 12, 13, 27eqlkr2 38572 . . . . . . . . . 10 ((𝑊 ∈ LVec ∧ (𝐺𝐹𝑔𝐹) ∧ (𝐿𝐺) = (𝐿𝑔)) → ∃𝑘𝐾 𝑔 = (𝐺f · (𝑉 × {𝑘})))
6358, 59, 60, 61, 62syl121anc 1373 . . . . . . . . 9 ((((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) ∧ (𝐿𝐺) = (𝐿𝑔)) → ∃𝑘𝐾 𝑔 = (𝐺f · (𝑉 × {𝑘})))
6463ex 412 . . . . . . . 8 (((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) → ((𝐿𝐺) = (𝐿𝑔) → ∃𝑘𝐾 𝑔 = (𝐺f · (𝑉 × {𝑘}))))
6557, 64sylbid 239 . . . . . . 7 (((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) → ((𝐿𝐺) ⊆ (𝐿𝑔) → ∃𝑘𝐾 𝑔 = (𝐺f · (𝑉 × {𝑘}))))
6625, 46, 65pm2.61da2ne 3027 . . . . . 6 ((𝜑𝑔𝐹) → ((𝐿𝐺) ⊆ (𝐿𝑔) → ∃𝑘𝐾 𝑔 = (𝐺f · (𝑉 × {𝑘}))))
672ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑔𝐹) ∧ 𝑘𝐾) → 𝑊 ∈ LVec)
6816ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑔𝐹) ∧ 𝑘𝐾) → 𝐺𝐹)
69 simpr 484 . . . . . . . . . 10 (((𝜑𝑔𝐹) ∧ 𝑘𝐾) → 𝑘𝐾)
7012, 5, 6, 14, 13, 27, 67, 68, 69lkrscss 38570 . . . . . . . . 9 (((𝜑𝑔𝐹) ∧ 𝑘𝐾) → (𝐿𝐺) ⊆ (𝐿‘(𝐺f · (𝑉 × {𝑘}))))
7170ex 412 . . . . . . . 8 ((𝜑𝑔𝐹) → (𝑘𝐾 → (𝐿𝐺) ⊆ (𝐿‘(𝐺f · (𝑉 × {𝑘})))))
72 fveq2 6897 . . . . . . . . . 10 (𝑔 = (𝐺f · (𝑉 × {𝑘})) → (𝐿𝑔) = (𝐿‘(𝐺f · (𝑉 × {𝑘}))))
7372sseq2d 4012 . . . . . . . . 9 (𝑔 = (𝐺f · (𝑉 × {𝑘})) → ((𝐿𝐺) ⊆ (𝐿𝑔) ↔ (𝐿𝐺) ⊆ (𝐿‘(𝐺f · (𝑉 × {𝑘})))))
7473biimprcd 249 . . . . . . . 8 ((𝐿𝐺) ⊆ (𝐿‘(𝐺f · (𝑉 × {𝑘}))) → (𝑔 = (𝐺f · (𝑉 × {𝑘})) → (𝐿𝐺) ⊆ (𝐿𝑔)))
7571, 74syl6 35 . . . . . . 7 ((𝜑𝑔𝐹) → (𝑘𝐾 → (𝑔 = (𝐺f · (𝑉 × {𝑘})) → (𝐿𝐺) ⊆ (𝐿𝑔))))
7675rexlimdv 3150 . . . . . 6 ((𝜑𝑔𝐹) → (∃𝑘𝐾 𝑔 = (𝐺f · (𝑉 × {𝑘})) → (𝐿𝐺) ⊆ (𝐿𝑔)))
7766, 76impbid 211 . . . . 5 ((𝜑𝑔𝐹) → ((𝐿𝐺) ⊆ (𝐿𝑔) ↔ ∃𝑘𝐾 𝑔 = (𝐺f · (𝑉 × {𝑘}))))
7877pm5.32da 578 . . . 4 (𝜑 → ((𝑔𝐹 ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) ↔ (𝑔𝐹 ∧ ∃𝑘𝐾 𝑔 = (𝐺f · (𝑉 × {𝑘})))))
794adantr 480 . . . . . . . . 9 ((𝜑𝑘𝐾) → 𝑊 ∈ LMod)
8016adantr 480 . . . . . . . . 9 ((𝜑𝑘𝐾) → 𝐺𝐹)
81 simpr 484 . . . . . . . . 9 ((𝜑𝑘𝐾) → 𝑘𝐾)
8212, 5, 6, 14, 13, 79, 80, 81lflvscl 38549 . . . . . . . 8 ((𝜑𝑘𝐾) → (𝐺f · (𝑉 × {𝑘})) ∈ 𝐹)
83 eleq1a 2824 . . . . . . . 8 ((𝐺f · (𝑉 × {𝑘})) ∈ 𝐹 → (𝑔 = (𝐺f · (𝑉 × {𝑘})) → 𝑔𝐹))
8482, 83syl 17 . . . . . . 7 ((𝜑𝑘𝐾) → (𝑔 = (𝐺f · (𝑉 × {𝑘})) → 𝑔𝐹))
8584pm4.71rd 562 . . . . . 6 ((𝜑𝑘𝐾) → (𝑔 = (𝐺f · (𝑉 × {𝑘})) ↔ (𝑔𝐹𝑔 = (𝐺f · (𝑉 × {𝑘})))))
8685rexbidva 3173 . . . . 5 (𝜑 → (∃𝑘𝐾 𝑔 = (𝐺f · (𝑉 × {𝑘})) ↔ ∃𝑘𝐾 (𝑔𝐹𝑔 = (𝐺f · (𝑉 × {𝑘})))))
87 r19.42v 3187 . . . . 5 (∃𝑘𝐾 (𝑔𝐹𝑔 = (𝐺f · (𝑉 × {𝑘}))) ↔ (𝑔𝐹 ∧ ∃𝑘𝐾 𝑔 = (𝐺f · (𝑉 × {𝑘}))))
8886, 87bitr2di 288 . . . 4 (𝜑 → ((𝑔𝐹 ∧ ∃𝑘𝐾 𝑔 = (𝐺f · (𝑉 × {𝑘}))) ↔ ∃𝑘𝐾 𝑔 = (𝐺f · (𝑉 × {𝑘}))))
8978, 88bitrd 279 . . 3 (𝜑 → ((𝑔𝐹 ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) ↔ ∃𝑘𝐾 𝑔 = (𝐺f · (𝑉 × {𝑘}))))
9089abbidv 2797 . 2 (𝜑 → {𝑔 ∣ (𝑔𝐹 ∧ (𝐿𝐺) ⊆ (𝐿𝑔))} = {𝑔 ∣ ∃𝑘𝐾 𝑔 = (𝐺f · (𝑉 × {𝑘}))})
911, 90eqtrid 2780 1 (𝜑 → {𝑔𝐹 ∣ (𝐿𝐺) ⊆ (𝐿𝑔)} = {𝑔 ∣ ∃𝑘𝐾 𝑔 = (𝐺f · (𝑉 × {𝑘}))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1534  wcel 2099  {cab 2705  wne 2937  wrex 3067  {crab 3429  wss 3947  {csn 4629   × cxp 5676  cfv 6548  (class class class)co 7420  f cof 7683  Basecbs 17180  .rcmulr 17234  Scalarcsca 17236  0gc0g 17421  LModclmod 20743  LVecclvec 20987  LSHypclsh 38447  LFnlclfn 38529  LKerclk 38557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11195  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-of 7685  df-om 7871  df-1st 7993  df-2nd 7994  df-tpos 8232  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-nn 12244  df-2 12306  df-3 12307  df-sets 17133  df-slot 17151  df-ndx 17163  df-base 17181  df-ress 17210  df-plusg 17246  df-mulr 17247  df-0g 17423  df-mgm 18600  df-sgrp 18679  df-mnd 18695  df-submnd 18741  df-grp 18893  df-minusg 18894  df-sbg 18895  df-subg 19078  df-cntz 19268  df-lsm 19591  df-cmn 19737  df-abl 19738  df-mgp 20075  df-rng 20093  df-ur 20122  df-ring 20175  df-oppr 20273  df-dvdsr 20296  df-unit 20297  df-invr 20327  df-drng 20626  df-lmod 20745  df-lss 20816  df-lsp 20856  df-lvec 20988  df-lshyp 38449  df-lfl 38530  df-lkr 38558
This theorem is referenced by:  ldual1dim  38638
  Copyright terms: Public domain W3C validator
OSZAR »