![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > measvunilem0 | Structured version Visualization version GIF version |
Description: Lemma for measvuni 33827. (Contributed by Thierry Arnoux, 6-Mar-2017.) |
Ref | Expression |
---|---|
measvunilem.0.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
measvunilem0 | ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) → (𝑀‘∪ 𝑥 ∈ 𝐴 𝐵) = Σ*𝑥 ∈ 𝐴(𝑀‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3l 1199 | . . 3 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) → 𝐴 ≼ ω) | |
2 | ctex 8977 | . . 3 ⊢ (𝐴 ≼ ω → 𝐴 ∈ V) | |
3 | measvunilem.0.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
4 | 3 | esum0 33662 | . . 3 ⊢ (𝐴 ∈ V → Σ*𝑥 ∈ 𝐴0 = 0) |
5 | 1, 2, 4 | 3syl 18 | . 2 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) → Σ*𝑥 ∈ 𝐴0 = 0) |
6 | nfv 1910 | . . . 4 ⊢ Ⅎ𝑥 𝑀 ∈ (measures‘𝑆) | |
7 | nfra1 3277 | . . . 4 ⊢ Ⅎ𝑥∀𝑥 ∈ 𝐴 𝐵 ∈ {∅} | |
8 | nfcv 2899 | . . . . . 6 ⊢ Ⅎ𝑥 ≼ | |
9 | nfcv 2899 | . . . . . 6 ⊢ Ⅎ𝑥ω | |
10 | 3, 8, 9 | nfbr 5189 | . . . . 5 ⊢ Ⅎ𝑥 𝐴 ≼ ω |
11 | nfdisj1 5121 | . . . . 5 ⊢ Ⅎ𝑥Disj 𝑥 ∈ 𝐴 𝐵 | |
12 | 10, 11 | nfan 1895 | . . . 4 ⊢ Ⅎ𝑥(𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵) |
13 | 6, 7, 12 | nf3an 1897 | . . 3 ⊢ Ⅎ𝑥(𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) |
14 | eqidd 2729 | . . 3 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) → 𝐴 = 𝐴) | |
15 | simp2 1135 | . . . . . . 7 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) → ∀𝑥 ∈ 𝐴 𝐵 ∈ {∅}) | |
16 | 15 | r19.21bi 3244 | . . . . . 6 ⊢ (((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ {∅}) |
17 | elsni 4641 | . . . . . 6 ⊢ (𝐵 ∈ {∅} → 𝐵 = ∅) | |
18 | 16, 17 | syl 17 | . . . . 5 ⊢ (((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) ∧ 𝑥 ∈ 𝐴) → 𝐵 = ∅) |
19 | 18 | fveq2d 6895 | . . . 4 ⊢ (((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) ∧ 𝑥 ∈ 𝐴) → (𝑀‘𝐵) = (𝑀‘∅)) |
20 | measvnul 33819 | . . . . . 6 ⊢ (𝑀 ∈ (measures‘𝑆) → (𝑀‘∅) = 0) | |
21 | 20 | 3ad2ant1 1131 | . . . . 5 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) → (𝑀‘∅) = 0) |
22 | 21 | adantr 480 | . . . 4 ⊢ (((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) ∧ 𝑥 ∈ 𝐴) → (𝑀‘∅) = 0) |
23 | 19, 22 | eqtrd 2768 | . . 3 ⊢ (((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) ∧ 𝑥 ∈ 𝐴) → (𝑀‘𝐵) = 0) |
24 | 13, 14, 23 | esumeq12dvaf 33644 | . 2 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) → Σ*𝑥 ∈ 𝐴(𝑀‘𝐵) = Σ*𝑥 ∈ 𝐴0) |
25 | 13, 3, 3, 14, 18 | iuneq12daf 32340 | . . . . 5 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 ∅) |
26 | iun0 5059 | . . . . 5 ⊢ ∪ 𝑥 ∈ 𝐴 ∅ = ∅ | |
27 | 25, 26 | eqtrdi 2784 | . . . 4 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) → ∪ 𝑥 ∈ 𝐴 𝐵 = ∅) |
28 | 27 | fveq2d 6895 | . . 3 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) → (𝑀‘∪ 𝑥 ∈ 𝐴 𝐵) = (𝑀‘∅)) |
29 | 28, 21 | eqtrd 2768 | . 2 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) → (𝑀‘∪ 𝑥 ∈ 𝐴 𝐵) = 0) |
30 | 5, 24, 29 | 3eqtr4rd 2779 | 1 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) → (𝑀‘∪ 𝑥 ∈ 𝐴 𝐵) = Σ*𝑥 ∈ 𝐴(𝑀‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 Ⅎwnfc 2879 ∀wral 3057 Vcvv 3470 ∅c0 4318 {csn 4624 ∪ ciun 4991 Disj wdisj 5107 class class class wbr 5142 ‘cfv 6542 ωcom 7864 ≼ cdom 8955 0cc0 11132 Σ*cesum 33640 measurescmeas 33808 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11188 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 ax-pre-sup 11210 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-iin 4994 df-disj 5108 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-of 7679 df-om 7865 df-1st 7987 df-2nd 7988 df-supp 8160 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-map 8840 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-fsupp 9380 df-fi 9428 df-sup 9459 df-inf 9460 df-oi 9527 df-card 9956 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-div 11896 df-nn 12237 df-2 12299 df-3 12300 df-4 12301 df-5 12302 df-6 12303 df-7 12304 df-8 12305 df-9 12306 df-n0 12497 df-z 12583 df-dec 12702 df-uz 12847 df-q 12957 df-xadd 13119 df-ioo 13354 df-ioc 13355 df-ico 13356 df-icc 13357 df-fz 13511 df-fzo 13654 df-seq 13993 df-hash 14316 df-struct 17109 df-sets 17126 df-slot 17144 df-ndx 17156 df-base 17174 df-ress 17203 df-plusg 17239 df-mulr 17240 df-tset 17245 df-ple 17246 df-ds 17248 df-rest 17397 df-topn 17398 df-0g 17416 df-gsum 17417 df-topgen 17418 df-ordt 17476 df-xrs 17477 df-mre 17559 df-mrc 17560 df-acs 17562 df-ps 18551 df-tsr 18552 df-mgm 18593 df-sgrp 18672 df-mnd 18688 df-submnd 18734 df-cntz 19261 df-cmn 19730 df-fbas 21269 df-fg 21270 df-top 22789 df-topon 22806 df-topsp 22828 df-bases 22842 df-ntr 22917 df-nei 22995 df-cn 23124 df-haus 23212 df-fil 23743 df-fm 23835 df-flim 23836 df-flf 23837 df-tsms 24024 df-esum 33641 df-meas 33809 |
This theorem is referenced by: measvuni 33827 |
Copyright terms: Public domain | W3C validator |