MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mhpsclcl Structured version   Visualization version   GIF version

Theorem mhpsclcl 22064
Description: A scalar (or constant) polynomial has degree 0. Compare deg1scl 26042. In other contexts, there may be an exception for the zero polynomial, but under df-mhp 22055 the zero polynomial can be any degree (see mhp0cl 22063) so there is no exception. (Contributed by SN, 25-May-2024.)
Hypotheses
Ref Expression
mhpsclcl.h 𝐻 = (𝐼 mHomP 𝑅)
mhpsclcl.p 𝑃 = (𝐼 mPoly 𝑅)
mhpsclcl.a 𝐴 = (algSc‘𝑃)
mhpsclcl.k 𝐾 = (Base‘𝑅)
mhpsclcl.i (𝜑𝐼𝑉)
mhpsclcl.r (𝜑𝑅 ∈ Ring)
mhpsclcl.c (𝜑𝐶𝐾)
Assertion
Ref Expression
mhpsclcl (𝜑 → (𝐴𝐶) ∈ (𝐻‘0))

Proof of Theorem mhpsclcl
Dummy variables 𝑑 𝑦 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mhpsclcl.p . . . . . . 7 𝑃 = (𝐼 mPoly 𝑅)
2 eqid 2728 . . . . . . 7 { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
3 eqid 2728 . . . . . . 7 (0g𝑅) = (0g𝑅)
4 mhpsclcl.k . . . . . . 7 𝐾 = (Base‘𝑅)
5 mhpsclcl.a . . . . . . 7 𝐴 = (algSc‘𝑃)
6 mhpsclcl.i . . . . . . . 8 (𝜑𝐼𝑉)
76adantr 480 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝐼𝑉)
8 mhpsclcl.r . . . . . . . 8 (𝜑𝑅 ∈ Ring)
98adantr 480 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑅 ∈ Ring)
10 mhpsclcl.c . . . . . . . 8 (𝜑𝐶𝐾)
1110adantr 480 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝐶𝐾)
121, 2, 3, 4, 5, 7, 9, 11mplascl 22001 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝐴𝐶) = (𝑦 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑦 = (𝐼 × {0}), 𝐶, (0g𝑅))))
13 eqeq1 2732 . . . . . . . 8 (𝑦 = 𝑑 → (𝑦 = (𝐼 × {0}) ↔ 𝑑 = (𝐼 × {0})))
1413ifbid 4547 . . . . . . 7 (𝑦 = 𝑑 → if(𝑦 = (𝐼 × {0}), 𝐶, (0g𝑅)) = if(𝑑 = (𝐼 × {0}), 𝐶, (0g𝑅)))
1514adantl 481 . . . . . 6 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑦 = 𝑑) → if(𝑦 = (𝐼 × {0}), 𝐶, (0g𝑅)) = if(𝑑 = (𝐼 × {0}), 𝐶, (0g𝑅)))
16 simpr 484 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
17 fvexd 6906 . . . . . . . 8 (𝜑 → (0g𝑅) ∈ V)
1810, 17ifexd 4572 . . . . . . 7 (𝜑 → if(𝑑 = (𝐼 × {0}), 𝐶, (0g𝑅)) ∈ V)
1918adantr 480 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → if(𝑑 = (𝐼 × {0}), 𝐶, (0g𝑅)) ∈ V)
2012, 15, 16, 19fvmptd 7006 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝐴𝐶)‘𝑑) = if(𝑑 = (𝐼 × {0}), 𝐶, (0g𝑅)))
2120neeq1d 2996 . . . 4 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝐴𝐶)‘𝑑) ≠ (0g𝑅) ↔ if(𝑑 = (𝐼 × {0}), 𝐶, (0g𝑅)) ≠ (0g𝑅)))
22 iffalse 4533 . . . . . 6 𝑑 = (𝐼 × {0}) → if(𝑑 = (𝐼 × {0}), 𝐶, (0g𝑅)) = (0g𝑅))
2322necon1ai 2964 . . . . 5 (if(𝑑 = (𝐼 × {0}), 𝐶, (0g𝑅)) ≠ (0g𝑅) → 𝑑 = (𝐼 × {0}))
24 fconstmpt 5734 . . . . . . . 8 (𝐼 × {0}) = (𝑘𝐼 ↦ 0)
2524oveq2i 7425 . . . . . . 7 ((ℂflds0) Σg (𝐼 × {0})) = ((ℂflds0) Σg (𝑘𝐼 ↦ 0))
26 nn0subm 21348 . . . . . . . . 9 0 ∈ (SubMnd‘ℂfld)
27 eqid 2728 . . . . . . . . . 10 (ℂflds0) = (ℂflds0)
2827submmnd 18758 . . . . . . . . 9 (ℕ0 ∈ (SubMnd‘ℂfld) → (ℂflds0) ∈ Mnd)
2926, 28ax-mp 5 . . . . . . . 8 (ℂflds0) ∈ Mnd
30 cnfld0 21313 . . . . . . . . . . 11 0 = (0g‘ℂfld)
3127, 30subm0 18760 . . . . . . . . . 10 (ℕ0 ∈ (SubMnd‘ℂfld) → 0 = (0g‘(ℂflds0)))
3226, 31ax-mp 5 . . . . . . . . 9 0 = (0g‘(ℂflds0))
3332gsumz 18781 . . . . . . . 8 (((ℂflds0) ∈ Mnd ∧ 𝐼𝑉) → ((ℂflds0) Σg (𝑘𝐼 ↦ 0)) = 0)
3429, 7, 33sylancr 586 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((ℂflds0) Σg (𝑘𝐼 ↦ 0)) = 0)
3525, 34eqtrid 2780 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((ℂflds0) Σg (𝐼 × {0})) = 0)
36 oveq2 7422 . . . . . . 7 (𝑑 = (𝐼 × {0}) → ((ℂflds0) Σg 𝑑) = ((ℂflds0) Σg (𝐼 × {0})))
3736eqeq1d 2730 . . . . . 6 (𝑑 = (𝐼 × {0}) → (((ℂflds0) Σg 𝑑) = 0 ↔ ((ℂflds0) Σg (𝐼 × {0})) = 0))
3835, 37syl5ibrcom 246 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑑 = (𝐼 × {0}) → ((ℂflds0) Σg 𝑑) = 0))
3923, 38syl5 34 . . . 4 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (if(𝑑 = (𝐼 × {0}), 𝐶, (0g𝑅)) ≠ (0g𝑅) → ((ℂflds0) Σg 𝑑) = 0))
4021, 39sylbid 239 . . 3 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝐴𝐶)‘𝑑) ≠ (0g𝑅) → ((ℂflds0) Σg 𝑑) = 0))
4140ralrimiva 3142 . 2 (𝜑 → ∀𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} (((𝐴𝐶)‘𝑑) ≠ (0g𝑅) → ((ℂflds0) Σg 𝑑) = 0))
42 mhpsclcl.h . . 3 𝐻 = (𝐼 mHomP 𝑅)
43 eqid 2728 . . 3 (Base‘𝑃) = (Base‘𝑃)
44 0nn0 12511 . . . 4 0 ∈ ℕ0
4544a1i 11 . . 3 (𝜑 → 0 ∈ ℕ0)
461, 43, 4, 5, 6, 8mplasclf 22002 . . . 4 (𝜑𝐴:𝐾⟶(Base‘𝑃))
4746, 10ffvelcdmd 7089 . . 3 (𝜑 → (𝐴𝐶) ∈ (Base‘𝑃))
4842, 1, 43, 3, 2, 6, 8, 45, 47ismhp3 22060 . 2 (𝜑 → ((𝐴𝐶) ∈ (𝐻‘0) ↔ ∀𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} (((𝐴𝐶)‘𝑑) ≠ (0g𝑅) → ((ℂflds0) Σg 𝑑) = 0)))
4941, 48mpbird 257 1 (𝜑 → (𝐴𝐶) ∈ (𝐻‘0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  wne 2936  wral 3057  {crab 3428  Vcvv 3470  ifcif 4524  {csn 4624  cmpt 5225   × cxp 5670  ccnv 5671  cima 5675  cfv 6542  (class class class)co 7414  m cmap 8838  Fincfn 8957  0cc0 11132  cn 12236  0cn0 12496  Basecbs 17173  s cress 17202  0gc0g 17414   Σg cgsu 17415  Mndcmnd 18687  SubMndcsubmnd 18732  Ringcrg 20166  fldccnfld 21272  algSccascl 21779   mPoly cmpl 21832   mHomP cmhp 22048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-pre-mulgt0 11209  ax-addf 11211
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-iin 4994  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-of 7679  df-ofr 7680  df-om 7865  df-1st 7987  df-2nd 7988  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-map 8840  df-pm 8841  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fsupp 9380  df-sup 9459  df-oi 9527  df-card 9956  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-sub 11470  df-neg 11471  df-nn 12237  df-2 12299  df-3 12300  df-4 12301  df-5 12302  df-6 12303  df-7 12304  df-8 12305  df-9 12306  df-n0 12497  df-z 12583  df-dec 12702  df-uz 12847  df-fz 13511  df-fzo 13654  df-seq 13993  df-hash 14316  df-struct 17109  df-sets 17126  df-slot 17144  df-ndx 17156  df-base 17174  df-ress 17203  df-plusg 17239  df-mulr 17240  df-starv 17241  df-sca 17242  df-vsca 17243  df-ip 17244  df-tset 17245  df-ple 17246  df-ds 17248  df-unif 17249  df-hom 17250  df-cco 17251  df-0g 17416  df-gsum 17417  df-prds 17422  df-pws 17424  df-mre 17559  df-mrc 17560  df-acs 17562  df-mgm 18593  df-sgrp 18672  df-mnd 18688  df-mhm 18733  df-submnd 18734  df-grp 18886  df-minusg 18887  df-sbg 18888  df-mulg 19017  df-subg 19071  df-ghm 19161  df-cntz 19261  df-cmn 19730  df-abl 19731  df-mgp 20068  df-rng 20086  df-ur 20115  df-ring 20168  df-cring 20169  df-subrng 20476  df-subrg 20501  df-lmod 20738  df-lss 20809  df-cnfld 21273  df-ascl 21782  df-psr 21835  df-mpl 21837  df-mhp 22055
This theorem is referenced by:  mhppwdeg  22067
  Copyright terms: Public domain W3C validator
OSZAR »