![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mhpsclcl | Structured version Visualization version GIF version |
Description: A scalar (or constant) polynomial has degree 0. Compare deg1scl 26042. In other contexts, there may be an exception for the zero polynomial, but under df-mhp 22055 the zero polynomial can be any degree (see mhp0cl 22063) so there is no exception. (Contributed by SN, 25-May-2024.) |
Ref | Expression |
---|---|
mhpsclcl.h | ⊢ 𝐻 = (𝐼 mHomP 𝑅) |
mhpsclcl.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
mhpsclcl.a | ⊢ 𝐴 = (algSc‘𝑃) |
mhpsclcl.k | ⊢ 𝐾 = (Base‘𝑅) |
mhpsclcl.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
mhpsclcl.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
mhpsclcl.c | ⊢ (𝜑 → 𝐶 ∈ 𝐾) |
Ref | Expression |
---|---|
mhpsclcl | ⊢ (𝜑 → (𝐴‘𝐶) ∈ (𝐻‘0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mhpsclcl.p | . . . . . . 7 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
2 | eqid 2728 | . . . . . . 7 ⊢ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
3 | eqid 2728 | . . . . . . 7 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
4 | mhpsclcl.k | . . . . . . 7 ⊢ 𝐾 = (Base‘𝑅) | |
5 | mhpsclcl.a | . . . . . . 7 ⊢ 𝐴 = (algSc‘𝑃) | |
6 | mhpsclcl.i | . . . . . . . 8 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
7 | 6 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝐼 ∈ 𝑉) |
8 | mhpsclcl.r | . . . . . . . 8 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
9 | 8 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑅 ∈ Ring) |
10 | mhpsclcl.c | . . . . . . . 8 ⊢ (𝜑 → 𝐶 ∈ 𝐾) | |
11 | 10 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝐶 ∈ 𝐾) |
12 | 1, 2, 3, 4, 5, 7, 9, 11 | mplascl 22001 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝐴‘𝐶) = (𝑦 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑦 = (𝐼 × {0}), 𝐶, (0g‘𝑅)))) |
13 | eqeq1 2732 | . . . . . . . 8 ⊢ (𝑦 = 𝑑 → (𝑦 = (𝐼 × {0}) ↔ 𝑑 = (𝐼 × {0}))) | |
14 | 13 | ifbid 4547 | . . . . . . 7 ⊢ (𝑦 = 𝑑 → if(𝑦 = (𝐼 × {0}), 𝐶, (0g‘𝑅)) = if(𝑑 = (𝐼 × {0}), 𝐶, (0g‘𝑅))) |
15 | 14 | adantl 481 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑦 = 𝑑) → if(𝑦 = (𝐼 × {0}), 𝐶, (0g‘𝑅)) = if(𝑑 = (𝐼 × {0}), 𝐶, (0g‘𝑅))) |
16 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) | |
17 | fvexd 6906 | . . . . . . . 8 ⊢ (𝜑 → (0g‘𝑅) ∈ V) | |
18 | 10, 17 | ifexd 4572 | . . . . . . 7 ⊢ (𝜑 → if(𝑑 = (𝐼 × {0}), 𝐶, (0g‘𝑅)) ∈ V) |
19 | 18 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) → if(𝑑 = (𝐼 × {0}), 𝐶, (0g‘𝑅)) ∈ V) |
20 | 12, 15, 16, 19 | fvmptd 7006 | . . . . 5 ⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) → ((𝐴‘𝐶)‘𝑑) = if(𝑑 = (𝐼 × {0}), 𝐶, (0g‘𝑅))) |
21 | 20 | neeq1d 2996 | . . . 4 ⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) → (((𝐴‘𝐶)‘𝑑) ≠ (0g‘𝑅) ↔ if(𝑑 = (𝐼 × {0}), 𝐶, (0g‘𝑅)) ≠ (0g‘𝑅))) |
22 | iffalse 4533 | . . . . . 6 ⊢ (¬ 𝑑 = (𝐼 × {0}) → if(𝑑 = (𝐼 × {0}), 𝐶, (0g‘𝑅)) = (0g‘𝑅)) | |
23 | 22 | necon1ai 2964 | . . . . 5 ⊢ (if(𝑑 = (𝐼 × {0}), 𝐶, (0g‘𝑅)) ≠ (0g‘𝑅) → 𝑑 = (𝐼 × {0})) |
24 | fconstmpt 5734 | . . . . . . . 8 ⊢ (𝐼 × {0}) = (𝑘 ∈ 𝐼 ↦ 0) | |
25 | 24 | oveq2i 7425 | . . . . . . 7 ⊢ ((ℂfld ↾s ℕ0) Σg (𝐼 × {0})) = ((ℂfld ↾s ℕ0) Σg (𝑘 ∈ 𝐼 ↦ 0)) |
26 | nn0subm 21348 | . . . . . . . . 9 ⊢ ℕ0 ∈ (SubMnd‘ℂfld) | |
27 | eqid 2728 | . . . . . . . . . 10 ⊢ (ℂfld ↾s ℕ0) = (ℂfld ↾s ℕ0) | |
28 | 27 | submmnd 18758 | . . . . . . . . 9 ⊢ (ℕ0 ∈ (SubMnd‘ℂfld) → (ℂfld ↾s ℕ0) ∈ Mnd) |
29 | 26, 28 | ax-mp 5 | . . . . . . . 8 ⊢ (ℂfld ↾s ℕ0) ∈ Mnd |
30 | cnfld0 21313 | . . . . . . . . . . 11 ⊢ 0 = (0g‘ℂfld) | |
31 | 27, 30 | subm0 18760 | . . . . . . . . . 10 ⊢ (ℕ0 ∈ (SubMnd‘ℂfld) → 0 = (0g‘(ℂfld ↾s ℕ0))) |
32 | 26, 31 | ax-mp 5 | . . . . . . . . 9 ⊢ 0 = (0g‘(ℂfld ↾s ℕ0)) |
33 | 32 | gsumz 18781 | . . . . . . . 8 ⊢ (((ℂfld ↾s ℕ0) ∈ Mnd ∧ 𝐼 ∈ 𝑉) → ((ℂfld ↾s ℕ0) Σg (𝑘 ∈ 𝐼 ↦ 0)) = 0) |
34 | 29, 7, 33 | sylancr 586 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) → ((ℂfld ↾s ℕ0) Σg (𝑘 ∈ 𝐼 ↦ 0)) = 0) |
35 | 25, 34 | eqtrid 2780 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) → ((ℂfld ↾s ℕ0) Σg (𝐼 × {0})) = 0) |
36 | oveq2 7422 | . . . . . . 7 ⊢ (𝑑 = (𝐼 × {0}) → ((ℂfld ↾s ℕ0) Σg 𝑑) = ((ℂfld ↾s ℕ0) Σg (𝐼 × {0}))) | |
37 | 36 | eqeq1d 2730 | . . . . . 6 ⊢ (𝑑 = (𝐼 × {0}) → (((ℂfld ↾s ℕ0) Σg 𝑑) = 0 ↔ ((ℂfld ↾s ℕ0) Σg (𝐼 × {0})) = 0)) |
38 | 35, 37 | syl5ibrcom 246 | . . . . 5 ⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑑 = (𝐼 × {0}) → ((ℂfld ↾s ℕ0) Σg 𝑑) = 0)) |
39 | 23, 38 | syl5 34 | . . . 4 ⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) → (if(𝑑 = (𝐼 × {0}), 𝐶, (0g‘𝑅)) ≠ (0g‘𝑅) → ((ℂfld ↾s ℕ0) Σg 𝑑) = 0)) |
40 | 21, 39 | sylbid 239 | . . 3 ⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) → (((𝐴‘𝐶)‘𝑑) ≠ (0g‘𝑅) → ((ℂfld ↾s ℕ0) Σg 𝑑) = 0)) |
41 | 40 | ralrimiva 3142 | . 2 ⊢ (𝜑 → ∀𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} (((𝐴‘𝐶)‘𝑑) ≠ (0g‘𝑅) → ((ℂfld ↾s ℕ0) Σg 𝑑) = 0)) |
42 | mhpsclcl.h | . . 3 ⊢ 𝐻 = (𝐼 mHomP 𝑅) | |
43 | eqid 2728 | . . 3 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
44 | 0nn0 12511 | . . . 4 ⊢ 0 ∈ ℕ0 | |
45 | 44 | a1i 11 | . . 3 ⊢ (𝜑 → 0 ∈ ℕ0) |
46 | 1, 43, 4, 5, 6, 8 | mplasclf 22002 | . . . 4 ⊢ (𝜑 → 𝐴:𝐾⟶(Base‘𝑃)) |
47 | 46, 10 | ffvelcdmd 7089 | . . 3 ⊢ (𝜑 → (𝐴‘𝐶) ∈ (Base‘𝑃)) |
48 | 42, 1, 43, 3, 2, 6, 8, 45, 47 | ismhp3 22060 | . 2 ⊢ (𝜑 → ((𝐴‘𝐶) ∈ (𝐻‘0) ↔ ∀𝑑 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} (((𝐴‘𝐶)‘𝑑) ≠ (0g‘𝑅) → ((ℂfld ↾s ℕ0) Σg 𝑑) = 0))) |
49 | 41, 48 | mpbird 257 | 1 ⊢ (𝜑 → (𝐴‘𝐶) ∈ (𝐻‘0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ≠ wne 2936 ∀wral 3057 {crab 3428 Vcvv 3470 ifcif 4524 {csn 4624 ↦ cmpt 5225 × cxp 5670 ◡ccnv 5671 “ cima 5675 ‘cfv 6542 (class class class)co 7414 ↑m cmap 8838 Fincfn 8957 0cc0 11132 ℕcn 12236 ℕ0cn0 12496 Basecbs 17173 ↾s cress 17202 0gc0g 17414 Σg cgsu 17415 Mndcmnd 18687 SubMndcsubmnd 18732 Ringcrg 20166 ℂfldccnfld 21272 algSccascl 21779 mPoly cmpl 21832 mHomP cmhp 22048 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11188 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 ax-addf 11211 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-iin 4994 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-of 7679 df-ofr 7680 df-om 7865 df-1st 7987 df-2nd 7988 df-supp 8160 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-map 8840 df-pm 8841 df-ixp 8910 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-fsupp 9380 df-sup 9459 df-oi 9527 df-card 9956 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-nn 12237 df-2 12299 df-3 12300 df-4 12301 df-5 12302 df-6 12303 df-7 12304 df-8 12305 df-9 12306 df-n0 12497 df-z 12583 df-dec 12702 df-uz 12847 df-fz 13511 df-fzo 13654 df-seq 13993 df-hash 14316 df-struct 17109 df-sets 17126 df-slot 17144 df-ndx 17156 df-base 17174 df-ress 17203 df-plusg 17239 df-mulr 17240 df-starv 17241 df-sca 17242 df-vsca 17243 df-ip 17244 df-tset 17245 df-ple 17246 df-ds 17248 df-unif 17249 df-hom 17250 df-cco 17251 df-0g 17416 df-gsum 17417 df-prds 17422 df-pws 17424 df-mre 17559 df-mrc 17560 df-acs 17562 df-mgm 18593 df-sgrp 18672 df-mnd 18688 df-mhm 18733 df-submnd 18734 df-grp 18886 df-minusg 18887 df-sbg 18888 df-mulg 19017 df-subg 19071 df-ghm 19161 df-cntz 19261 df-cmn 19730 df-abl 19731 df-mgp 20068 df-rng 20086 df-ur 20115 df-ring 20168 df-cring 20169 df-subrng 20476 df-subrg 20501 df-lmod 20738 df-lss 20809 df-cnfld 21273 df-ascl 21782 df-psr 21835 df-mpl 21837 df-mhp 22055 |
This theorem is referenced by: mhppwdeg 22067 |
Copyright terms: Public domain | W3C validator |