![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > negfcncf | Structured version Visualization version GIF version |
Description: The negative of a continuous complex function is continuous. (Contributed by Paul Chapman, 21-Jan-2008.) (Revised by Mario Carneiro, 25-Aug-2014.) |
Ref | Expression |
---|---|
negfcncf.1 | ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ -(𝐹‘𝑥)) |
Ref | Expression |
---|---|
negfcncf | ⊢ (𝐹 ∈ (𝐴–cn→ℂ) → 𝐺 ∈ (𝐴–cn→ℂ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cncff 24812 | . . . . 5 ⊢ (𝐹 ∈ (𝐴–cn→ℂ) → 𝐹:𝐴⟶ℂ) | |
2 | 1 | ffvelcdmda 7094 | . . . 4 ⊢ ((𝐹 ∈ (𝐴–cn→ℂ) ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ ℂ) |
3 | 1 | feqmptd 6967 | . . . 4 ⊢ (𝐹 ∈ (𝐴–cn→ℂ) → 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) |
4 | eqidd 2729 | . . . 4 ⊢ (𝐹 ∈ (𝐴–cn→ℂ) → (𝑦 ∈ ℂ ↦ -𝑦) = (𝑦 ∈ ℂ ↦ -𝑦)) | |
5 | negeq 11482 | . . . 4 ⊢ (𝑦 = (𝐹‘𝑥) → -𝑦 = -(𝐹‘𝑥)) | |
6 | 2, 3, 4, 5 | fmptco 7138 | . . 3 ⊢ (𝐹 ∈ (𝐴–cn→ℂ) → ((𝑦 ∈ ℂ ↦ -𝑦) ∘ 𝐹) = (𝑥 ∈ 𝐴 ↦ -(𝐹‘𝑥))) |
7 | negfcncf.1 | . . 3 ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ -(𝐹‘𝑥)) | |
8 | 6, 7 | eqtr4di 2786 | . 2 ⊢ (𝐹 ∈ (𝐴–cn→ℂ) → ((𝑦 ∈ ℂ ↦ -𝑦) ∘ 𝐹) = 𝐺) |
9 | id 22 | . . 3 ⊢ (𝐹 ∈ (𝐴–cn→ℂ) → 𝐹 ∈ (𝐴–cn→ℂ)) | |
10 | ssid 4002 | . . . 4 ⊢ ℂ ⊆ ℂ | |
11 | eqid 2728 | . . . . 5 ⊢ (𝑦 ∈ ℂ ↦ -𝑦) = (𝑦 ∈ ℂ ↦ -𝑦) | |
12 | 11 | negcncf 24841 | . . . 4 ⊢ (ℂ ⊆ ℂ → (𝑦 ∈ ℂ ↦ -𝑦) ∈ (ℂ–cn→ℂ)) |
13 | 10, 12 | mp1i 13 | . . 3 ⊢ (𝐹 ∈ (𝐴–cn→ℂ) → (𝑦 ∈ ℂ ↦ -𝑦) ∈ (ℂ–cn→ℂ)) |
14 | 9, 13 | cncfco 24826 | . 2 ⊢ (𝐹 ∈ (𝐴–cn→ℂ) → ((𝑦 ∈ ℂ ↦ -𝑦) ∘ 𝐹) ∈ (𝐴–cn→ℂ)) |
15 | 8, 14 | eqeltrrd 2830 | 1 ⊢ (𝐹 ∈ (𝐴–cn→ℂ) → 𝐺 ∈ (𝐴–cn→ℂ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ⊆ wss 3947 ↦ cmpt 5231 ∘ ccom 5682 ‘cfv 6548 (class class class)co 7420 ℂcc 11136 -cneg 11475 –cn→ccncf 24795 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-pre-sup 11216 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-isom 6557 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-of 7685 df-om 7871 df-1st 7993 df-2nd 7994 df-supp 8166 df-frecs 8286 df-wrecs 8317 df-recs 8391 df-rdg 8430 df-1o 8486 df-2o 8487 df-er 8724 df-map 8846 df-ixp 8916 df-en 8964 df-dom 8965 df-sdom 8966 df-fin 8967 df-fsupp 9386 df-fi 9434 df-sup 9465 df-inf 9466 df-oi 9533 df-card 9962 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-div 11902 df-nn 12243 df-2 12305 df-3 12306 df-4 12307 df-5 12308 df-6 12309 df-7 12310 df-8 12311 df-9 12312 df-n0 12503 df-z 12589 df-dec 12708 df-uz 12853 df-q 12963 df-rp 13007 df-xneg 13124 df-xadd 13125 df-xmul 13126 df-icc 13363 df-fz 13517 df-fzo 13660 df-seq 13999 df-exp 14059 df-hash 14322 df-cj 15078 df-re 15079 df-im 15080 df-sqrt 15214 df-abs 15215 df-struct 17115 df-sets 17132 df-slot 17150 df-ndx 17162 df-base 17180 df-ress 17209 df-plusg 17245 df-mulr 17246 df-starv 17247 df-sca 17248 df-vsca 17249 df-ip 17250 df-tset 17251 df-ple 17252 df-ds 17254 df-unif 17255 df-hom 17256 df-cco 17257 df-rest 17403 df-topn 17404 df-0g 17422 df-gsum 17423 df-topgen 17424 df-pt 17425 df-prds 17428 df-xrs 17483 df-qtop 17488 df-imas 17489 df-xps 17491 df-mre 17565 df-mrc 17566 df-acs 17568 df-mgm 18599 df-sgrp 18678 df-mnd 18694 df-submnd 18740 df-mulg 19023 df-cntz 19267 df-cmn 19736 df-psmet 21270 df-xmet 21271 df-met 21272 df-bl 21273 df-mopn 21274 df-cnfld 21279 df-top 22795 df-topon 22812 df-topsp 22834 df-bases 22848 df-cn 23130 df-cnp 23131 df-tx 23465 df-hmeo 23658 df-xms 24225 df-ms 24226 df-tms 24227 df-cncf 24797 |
This theorem is referenced by: ivth2 25383 rolle 25921 dvivth 25942 logccv 26596 fdvneggt 34232 fdvnegge 34234 itgsin0pilem1 45338 itgsinexplem1 45342 |
Copyright terms: Public domain | W3C validator |