![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > zhmnrg | Structured version Visualization version GIF version |
Description: The ℤ-module built from a normed ring is also a normed ring. (Contributed by Thierry Arnoux, 8-Nov-2017.) |
Ref | Expression |
---|---|
zlmlem2.1 | ⊢ 𝑊 = (ℤMod‘𝐺) |
Ref | Expression |
---|---|
zhmnrg | ⊢ (𝐺 ∈ NrmRing → 𝑊 ∈ NrmRing) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2725 | . . . . . . . 8 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
2 | 1 | a1i 11 | . . . . . . 7 ⊢ (𝐺 ∈ NrmRing → (Base‘𝐺) = (Base‘𝐺)) |
3 | zlmlem2.1 | . . . . . . . . 9 ⊢ 𝑊 = (ℤMod‘𝐺) | |
4 | 3, 1 | zlmbas 21449 | . . . . . . . 8 ⊢ (Base‘𝐺) = (Base‘𝑊) |
5 | 4 | a1i 11 | . . . . . . 7 ⊢ (𝐺 ∈ NrmRing → (Base‘𝐺) = (Base‘𝑊)) |
6 | eqid 2725 | . . . . . . . . . 10 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
7 | 3, 6 | zlmplusg 21451 | . . . . . . . . 9 ⊢ (+g‘𝐺) = (+g‘𝑊) |
8 | 7 | a1i 11 | . . . . . . . 8 ⊢ (𝐺 ∈ NrmRing → (+g‘𝐺) = (+g‘𝑊)) |
9 | 8 | oveqdr 7445 | . . . . . . 7 ⊢ ((𝐺 ∈ NrmRing ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) → (𝑥(+g‘𝐺)𝑦) = (𝑥(+g‘𝑊)𝑦)) |
10 | 2, 5, 9 | grppropd 18913 | . . . . . 6 ⊢ (𝐺 ∈ NrmRing → (𝐺 ∈ Grp ↔ 𝑊 ∈ Grp)) |
11 | eqid 2725 | . . . . . . . . 9 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
12 | 3, 11 | zlmds 33650 | . . . . . . . 8 ⊢ (𝐺 ∈ NrmRing → (dist‘𝐺) = (dist‘𝑊)) |
13 | 12 | reseq1d 5983 | . . . . . . 7 ⊢ (𝐺 ∈ NrmRing → ((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))) = ((dist‘𝑊) ↾ ((Base‘𝐺) × (Base‘𝐺)))) |
14 | eqid 2725 | . . . . . . . . 9 ⊢ (TopSet‘𝐺) = (TopSet‘𝐺) | |
15 | 3, 14 | zlmtset 33652 | . . . . . . . 8 ⊢ (𝐺 ∈ NrmRing → (TopSet‘𝐺) = (TopSet‘𝑊)) |
16 | 5, 15 | topnpropd 17418 | . . . . . . 7 ⊢ (𝐺 ∈ NrmRing → (TopOpen‘𝐺) = (TopOpen‘𝑊)) |
17 | 2, 5, 13, 16 | mspropd 24411 | . . . . . 6 ⊢ (𝐺 ∈ NrmRing → (𝐺 ∈ MetSp ↔ 𝑊 ∈ MetSp)) |
18 | eqid 2725 | . . . . . . . . 9 ⊢ (norm‘𝐺) = (norm‘𝐺) | |
19 | 3, 18 | zlmnm 33654 | . . . . . . . 8 ⊢ (𝐺 ∈ NrmRing → (norm‘𝐺) = (norm‘𝑊)) |
20 | 5, 8 | grpsubpropd 19006 | . . . . . . . 8 ⊢ (𝐺 ∈ NrmRing → (-g‘𝐺) = (-g‘𝑊)) |
21 | 19, 20 | coeq12d 5866 | . . . . . . 7 ⊢ (𝐺 ∈ NrmRing → ((norm‘𝐺) ∘ (-g‘𝐺)) = ((norm‘𝑊) ∘ (-g‘𝑊))) |
22 | 21, 12 | sseq12d 4011 | . . . . . 6 ⊢ (𝐺 ∈ NrmRing → (((norm‘𝐺) ∘ (-g‘𝐺)) ⊆ (dist‘𝐺) ↔ ((norm‘𝑊) ∘ (-g‘𝑊)) ⊆ (dist‘𝑊))) |
23 | 10, 17, 22 | 3anbi123d 1432 | . . . . 5 ⊢ (𝐺 ∈ NrmRing → ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ((norm‘𝐺) ∘ (-g‘𝐺)) ⊆ (dist‘𝐺)) ↔ (𝑊 ∈ Grp ∧ 𝑊 ∈ MetSp ∧ ((norm‘𝑊) ∘ (-g‘𝑊)) ⊆ (dist‘𝑊)))) |
24 | eqid 2725 | . . . . . 6 ⊢ (-g‘𝐺) = (-g‘𝐺) | |
25 | 18, 24, 11 | isngp 24536 | . . . . 5 ⊢ (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ((norm‘𝐺) ∘ (-g‘𝐺)) ⊆ (dist‘𝐺))) |
26 | eqid 2725 | . . . . . 6 ⊢ (norm‘𝑊) = (norm‘𝑊) | |
27 | eqid 2725 | . . . . . 6 ⊢ (-g‘𝑊) = (-g‘𝑊) | |
28 | eqid 2725 | . . . . . 6 ⊢ (dist‘𝑊) = (dist‘𝑊) | |
29 | 26, 27, 28 | isngp 24536 | . . . . 5 ⊢ (𝑊 ∈ NrmGrp ↔ (𝑊 ∈ Grp ∧ 𝑊 ∈ MetSp ∧ ((norm‘𝑊) ∘ (-g‘𝑊)) ⊆ (dist‘𝑊))) |
30 | 23, 25, 29 | 3bitr4g 313 | . . . 4 ⊢ (𝐺 ∈ NrmRing → (𝐺 ∈ NrmGrp ↔ 𝑊 ∈ NrmGrp)) |
31 | eqid 2725 | . . . . . . . 8 ⊢ (.r‘𝐺) = (.r‘𝐺) | |
32 | 3, 31 | zlmmulr 21453 | . . . . . . 7 ⊢ (.r‘𝐺) = (.r‘𝑊) |
33 | 32 | a1i 11 | . . . . . 6 ⊢ (𝐺 ∈ NrmRing → (.r‘𝐺) = (.r‘𝑊)) |
34 | 5, 8, 33 | abvpropd2 32752 | . . . . 5 ⊢ (𝐺 ∈ NrmRing → (AbsVal‘𝐺) = (AbsVal‘𝑊)) |
35 | 19, 34 | eleq12d 2819 | . . . 4 ⊢ (𝐺 ∈ NrmRing → ((norm‘𝐺) ∈ (AbsVal‘𝐺) ↔ (norm‘𝑊) ∈ (AbsVal‘𝑊))) |
36 | 30, 35 | anbi12d 630 | . . 3 ⊢ (𝐺 ∈ NrmRing → ((𝐺 ∈ NrmGrp ∧ (norm‘𝐺) ∈ (AbsVal‘𝐺)) ↔ (𝑊 ∈ NrmGrp ∧ (norm‘𝑊) ∈ (AbsVal‘𝑊)))) |
37 | eqid 2725 | . . . 4 ⊢ (AbsVal‘𝐺) = (AbsVal‘𝐺) | |
38 | 18, 37 | isnrg 24608 | . . 3 ⊢ (𝐺 ∈ NrmRing ↔ (𝐺 ∈ NrmGrp ∧ (norm‘𝐺) ∈ (AbsVal‘𝐺))) |
39 | eqid 2725 | . . . 4 ⊢ (AbsVal‘𝑊) = (AbsVal‘𝑊) | |
40 | 26, 39 | isnrg 24608 | . . 3 ⊢ (𝑊 ∈ NrmRing ↔ (𝑊 ∈ NrmGrp ∧ (norm‘𝑊) ∈ (AbsVal‘𝑊))) |
41 | 36, 38, 40 | 3bitr4g 313 | . 2 ⊢ (𝐺 ∈ NrmRing → (𝐺 ∈ NrmRing ↔ 𝑊 ∈ NrmRing)) |
42 | 41 | ibi 266 | 1 ⊢ (𝐺 ∈ NrmRing → 𝑊 ∈ NrmRing) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ⊆ wss 3945 × cxp 5675 ∘ ccom 5681 ‘cfv 6547 Basecbs 17180 +gcplusg 17233 .rcmulr 17234 TopSetcts 17239 distcds 17242 Grpcgrp 18895 -gcsg 18897 AbsValcabv 20701 ℤModczlm 21431 MetSpcms 24255 normcnm 24516 NrmGrpcngp 24517 NrmRingcnrg 24519 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5364 ax-pr 5428 ax-un 7739 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3965 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6499 df-fun 6549 df-fn 6550 df-f 6551 df-f1 6552 df-fo 6553 df-f1o 6554 df-fv 6555 df-riota 7373 df-ov 7420 df-oprab 7421 df-mpo 7422 df-om 7870 df-1st 7992 df-2nd 7993 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8723 df-map 8845 df-en 8963 df-dom 8964 df-sdom 8965 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-nn 12243 df-2 12305 df-3 12306 df-4 12307 df-5 12308 df-6 12309 df-7 12310 df-8 12311 df-9 12312 df-n0 12503 df-z 12589 df-dec 12708 df-sets 17133 df-slot 17151 df-ndx 17163 df-base 17181 df-plusg 17246 df-mulr 17247 df-sca 17249 df-vsca 17250 df-ip 17251 df-tset 17252 df-ds 17255 df-rest 17404 df-topn 17405 df-0g 17423 df-mgm 18600 df-sgrp 18679 df-mnd 18695 df-grp 18898 df-minusg 18899 df-sbg 18900 df-mgp 20080 df-ring 20180 df-abv 20702 df-zlm 21435 df-top 22827 df-topon 22844 df-topsp 22866 df-xms 24257 df-ms 24258 df-nm 24522 df-ngp 24523 df-nrg 24525 |
This theorem is referenced by: cnzh 33658 rezh 33659 qqhnm 33678 |
Copyright terms: Public domain | W3C validator |