![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nmmulg | Structured version Visualization version GIF version |
Description: The norm of a group product, provided the ℤ-module is normed. (Contributed by Thierry Arnoux, 8-Nov-2017.) |
Ref | Expression |
---|---|
nmmulg.x | ⊢ 𝐵 = (Base‘𝑅) |
nmmulg.n | ⊢ 𝑁 = (norm‘𝑅) |
nmmulg.z | ⊢ 𝑍 = (ℤMod‘𝑅) |
nmmulg.t | ⊢ · = (.g‘𝑅) |
Ref | Expression |
---|---|
nmmulg | ⊢ ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝑁‘(𝑀 · 𝑋)) = ((abs‘𝑀) · (𝑁‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 1134 | . . . 4 ⊢ ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → 𝑀 ∈ ℤ) | |
2 | zringbas 21384 | . . . . 5 ⊢ ℤ = (Base‘ℤring) | |
3 | nlmlmod 24626 | . . . . . . . . 9 ⊢ (𝑍 ∈ NrmMod → 𝑍 ∈ LMod) | |
4 | nmmulg.z | . . . . . . . . . 10 ⊢ 𝑍 = (ℤMod‘𝑅) | |
5 | 4 | zlmlmod 21457 | . . . . . . . . 9 ⊢ (𝑅 ∈ Abel ↔ 𝑍 ∈ LMod) |
6 | 3, 5 | sylibr 233 | . . . . . . . 8 ⊢ (𝑍 ∈ NrmMod → 𝑅 ∈ Abel) |
7 | 6 | 3ad2ant1 1130 | . . . . . . 7 ⊢ ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → 𝑅 ∈ Abel) |
8 | 4 | zlmsca 21455 | . . . . . . 7 ⊢ (𝑅 ∈ Abel → ℤring = (Scalar‘𝑍)) |
9 | 7, 8 | syl 17 | . . . . . 6 ⊢ ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → ℤring = (Scalar‘𝑍)) |
10 | 9 | fveq2d 6898 | . . . . 5 ⊢ ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (Base‘ℤring) = (Base‘(Scalar‘𝑍))) |
11 | 2, 10 | eqtrid 2777 | . . . 4 ⊢ ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → ℤ = (Base‘(Scalar‘𝑍))) |
12 | 1, 11 | eleqtrd 2827 | . . 3 ⊢ ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → 𝑀 ∈ (Base‘(Scalar‘𝑍))) |
13 | nmmulg.x | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
14 | 4, 13 | zlmbas 21449 | . . . 4 ⊢ 𝐵 = (Base‘𝑍) |
15 | eqid 2725 | . . . 4 ⊢ (norm‘𝑍) = (norm‘𝑍) | |
16 | nmmulg.t | . . . . 5 ⊢ · = (.g‘𝑅) | |
17 | 4, 16 | zlmvsca 21456 | . . . 4 ⊢ · = ( ·𝑠 ‘𝑍) |
18 | eqid 2725 | . . . 4 ⊢ (Scalar‘𝑍) = (Scalar‘𝑍) | |
19 | eqid 2725 | . . . 4 ⊢ (Base‘(Scalar‘𝑍)) = (Base‘(Scalar‘𝑍)) | |
20 | eqid 2725 | . . . 4 ⊢ (norm‘(Scalar‘𝑍)) = (norm‘(Scalar‘𝑍)) | |
21 | 14, 15, 17, 18, 19, 20 | nmvs 24624 | . . 3 ⊢ ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ (Base‘(Scalar‘𝑍)) ∧ 𝑋 ∈ 𝐵) → ((norm‘𝑍)‘(𝑀 · 𝑋)) = (((norm‘(Scalar‘𝑍))‘𝑀) · ((norm‘𝑍)‘𝑋))) |
22 | 12, 21 | syld3an2 1408 | . 2 ⊢ ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → ((norm‘𝑍)‘(𝑀 · 𝑋)) = (((norm‘(Scalar‘𝑍))‘𝑀) · ((norm‘𝑍)‘𝑋))) |
23 | nmmulg.n | . . . . 5 ⊢ 𝑁 = (norm‘𝑅) | |
24 | 4, 23 | zlmnm 33654 | . . . 4 ⊢ (𝑅 ∈ Abel → 𝑁 = (norm‘𝑍)) |
25 | 7, 24 | syl 17 | . . 3 ⊢ ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → 𝑁 = (norm‘𝑍)) |
26 | 25 | fveq1d 6896 | . 2 ⊢ ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝑁‘(𝑀 · 𝑋)) = ((norm‘𝑍)‘(𝑀 · 𝑋))) |
27 | zzsnm 33647 | . . . . 5 ⊢ (𝑀 ∈ ℤ → (abs‘𝑀) = ((norm‘ℤring)‘𝑀)) | |
28 | 27 | 3ad2ant2 1131 | . . . 4 ⊢ ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (abs‘𝑀) = ((norm‘ℤring)‘𝑀)) |
29 | 9 | fveq2d 6898 | . . . . 5 ⊢ ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (norm‘ℤring) = (norm‘(Scalar‘𝑍))) |
30 | 29 | fveq1d 6896 | . . . 4 ⊢ ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → ((norm‘ℤring)‘𝑀) = ((norm‘(Scalar‘𝑍))‘𝑀)) |
31 | 28, 30 | eqtrd 2765 | . . 3 ⊢ ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (abs‘𝑀) = ((norm‘(Scalar‘𝑍))‘𝑀)) |
32 | 25 | fveq1d 6896 | . . 3 ⊢ ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) = ((norm‘𝑍)‘𝑋)) |
33 | 31, 32 | oveq12d 7435 | . 2 ⊢ ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → ((abs‘𝑀) · (𝑁‘𝑋)) = (((norm‘(Scalar‘𝑍))‘𝑀) · ((norm‘𝑍)‘𝑋))) |
34 | 22, 26, 33 | 3eqtr4d 2775 | 1 ⊢ ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝑁‘(𝑀 · 𝑋)) = ((abs‘𝑀) · (𝑁‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ‘cfv 6547 (class class class)co 7417 · cmul 11143 ℤcz 12588 abscabs 15214 Basecbs 17180 Scalarcsca 17236 .gcmg 19028 Abelcabl 19741 LModclmod 20748 ℤringczring 21377 ℤModczlm 21431 normcnm 24516 NrmModcnlm 24520 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5299 ax-nul 5306 ax-pow 5364 ax-pr 5428 ax-un 7739 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-pre-sup 11216 ax-addf 11217 ax-mulf 11218 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3965 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6499 df-fun 6549 df-fn 6550 df-f 6551 df-f1 6552 df-fo 6553 df-f1o 6554 df-fv 6555 df-riota 7373 df-ov 7420 df-oprab 7421 df-mpo 7422 df-om 7870 df-1st 7992 df-2nd 7993 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8723 df-en 8963 df-dom 8964 df-sdom 8965 df-fin 8966 df-sup 9465 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-div 11902 df-nn 12243 df-2 12305 df-3 12306 df-4 12307 df-5 12308 df-6 12309 df-7 12310 df-8 12311 df-9 12312 df-n0 12503 df-z 12589 df-dec 12708 df-uz 12853 df-rp 13007 df-fz 13517 df-fzo 13660 df-seq 14000 df-exp 14060 df-cj 15079 df-re 15080 df-im 15081 df-sqrt 15215 df-abs 15216 df-struct 17116 df-sets 17133 df-slot 17151 df-ndx 17163 df-base 17181 df-ress 17210 df-plusg 17246 df-mulr 17247 df-starv 17248 df-sca 17249 df-vsca 17250 df-ip 17251 df-tset 17252 df-ple 17253 df-ds 17255 df-unif 17256 df-0g 17423 df-mgm 18600 df-sgrp 18679 df-mnd 18695 df-grp 18898 df-minusg 18899 df-mulg 19029 df-subg 19083 df-cmn 19742 df-abl 19743 df-mgp 20080 df-rng 20098 df-ur 20127 df-ring 20180 df-cring 20181 df-subrng 20488 df-subrg 20513 df-lmod 20750 df-cnfld 21285 df-zring 21378 df-zlm 21435 df-nm 24522 df-nlm 24526 |
This theorem is referenced by: zrhnm 33657 |
Copyright terms: Public domain | W3C validator |