![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nmmulg | Structured version Visualization version GIF version |
Description: The norm of a group product, provided the ℤ-module is normed. (Contributed by Thierry Arnoux, 8-Nov-2017.) |
Ref | Expression |
---|---|
nmmulg.x | ⊢ 𝐵 = (Base‘𝑅) |
nmmulg.n | ⊢ 𝑁 = (norm‘𝑅) |
nmmulg.z | ⊢ 𝑍 = (ℤMod‘𝑅) |
nmmulg.t | ⊢ · = (.g‘𝑅) |
Ref | Expression |
---|---|
nmmulg | ⊢ ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝑁‘(𝑀 · 𝑋)) = ((abs‘𝑀) · (𝑁‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 1134 | . . . 4 ⊢ ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → 𝑀 ∈ ℤ) | |
2 | zringbas 21396 | . . . . 5 ⊢ ℤ = (Base‘ℤring) | |
3 | nlmlmod 24639 | . . . . . . . . 9 ⊢ (𝑍 ∈ NrmMod → 𝑍 ∈ LMod) | |
4 | nmmulg.z | . . . . . . . . . 10 ⊢ 𝑍 = (ℤMod‘𝑅) | |
5 | 4 | zlmlmod 21469 | . . . . . . . . 9 ⊢ (𝑅 ∈ Abel ↔ 𝑍 ∈ LMod) |
6 | 3, 5 | sylibr 233 | . . . . . . . 8 ⊢ (𝑍 ∈ NrmMod → 𝑅 ∈ Abel) |
7 | 6 | 3ad2ant1 1130 | . . . . . . 7 ⊢ ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → 𝑅 ∈ Abel) |
8 | 4 | zlmsca 21467 | . . . . . . 7 ⊢ (𝑅 ∈ Abel → ℤring = (Scalar‘𝑍)) |
9 | 7, 8 | syl 17 | . . . . . 6 ⊢ ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → ℤring = (Scalar‘𝑍)) |
10 | 9 | fveq2d 6900 | . . . . 5 ⊢ ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (Base‘ℤring) = (Base‘(Scalar‘𝑍))) |
11 | 2, 10 | eqtrid 2777 | . . . 4 ⊢ ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → ℤ = (Base‘(Scalar‘𝑍))) |
12 | 1, 11 | eleqtrd 2827 | . . 3 ⊢ ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → 𝑀 ∈ (Base‘(Scalar‘𝑍))) |
13 | nmmulg.x | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
14 | 4, 13 | zlmbas 21461 | . . . 4 ⊢ 𝐵 = (Base‘𝑍) |
15 | eqid 2725 | . . . 4 ⊢ (norm‘𝑍) = (norm‘𝑍) | |
16 | nmmulg.t | . . . . 5 ⊢ · = (.g‘𝑅) | |
17 | 4, 16 | zlmvsca 21468 | . . . 4 ⊢ · = ( ·𝑠 ‘𝑍) |
18 | eqid 2725 | . . . 4 ⊢ (Scalar‘𝑍) = (Scalar‘𝑍) | |
19 | eqid 2725 | . . . 4 ⊢ (Base‘(Scalar‘𝑍)) = (Base‘(Scalar‘𝑍)) | |
20 | eqid 2725 | . . . 4 ⊢ (norm‘(Scalar‘𝑍)) = (norm‘(Scalar‘𝑍)) | |
21 | 14, 15, 17, 18, 19, 20 | nmvs 24637 | . . 3 ⊢ ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ (Base‘(Scalar‘𝑍)) ∧ 𝑋 ∈ 𝐵) → ((norm‘𝑍)‘(𝑀 · 𝑋)) = (((norm‘(Scalar‘𝑍))‘𝑀) · ((norm‘𝑍)‘𝑋))) |
22 | 12, 21 | syld3an2 1408 | . 2 ⊢ ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → ((norm‘𝑍)‘(𝑀 · 𝑋)) = (((norm‘(Scalar‘𝑍))‘𝑀) · ((norm‘𝑍)‘𝑋))) |
23 | nmmulg.n | . . . . 5 ⊢ 𝑁 = (norm‘𝑅) | |
24 | 4, 23 | zlmnm 33698 | . . . 4 ⊢ (𝑅 ∈ Abel → 𝑁 = (norm‘𝑍)) |
25 | 7, 24 | syl 17 | . . 3 ⊢ ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → 𝑁 = (norm‘𝑍)) |
26 | 25 | fveq1d 6898 | . 2 ⊢ ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝑁‘(𝑀 · 𝑋)) = ((norm‘𝑍)‘(𝑀 · 𝑋))) |
27 | zzsnm 33691 | . . . . 5 ⊢ (𝑀 ∈ ℤ → (abs‘𝑀) = ((norm‘ℤring)‘𝑀)) | |
28 | 27 | 3ad2ant2 1131 | . . . 4 ⊢ ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (abs‘𝑀) = ((norm‘ℤring)‘𝑀)) |
29 | 9 | fveq2d 6900 | . . . . 5 ⊢ ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (norm‘ℤring) = (norm‘(Scalar‘𝑍))) |
30 | 29 | fveq1d 6898 | . . . 4 ⊢ ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → ((norm‘ℤring)‘𝑀) = ((norm‘(Scalar‘𝑍))‘𝑀)) |
31 | 28, 30 | eqtrd 2765 | . . 3 ⊢ ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (abs‘𝑀) = ((norm‘(Scalar‘𝑍))‘𝑀)) |
32 | 25 | fveq1d 6898 | . . 3 ⊢ ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) = ((norm‘𝑍)‘𝑋)) |
33 | 31, 32 | oveq12d 7437 | . 2 ⊢ ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → ((abs‘𝑀) · (𝑁‘𝑋)) = (((norm‘(Scalar‘𝑍))‘𝑀) · ((norm‘𝑍)‘𝑋))) |
34 | 22, 26, 33 | 3eqtr4d 2775 | 1 ⊢ ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝑁‘(𝑀 · 𝑋)) = ((abs‘𝑀) · (𝑁‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ‘cfv 6549 (class class class)co 7419 · cmul 11145 ℤcz 12591 abscabs 15217 Basecbs 17183 Scalarcsca 17239 .gcmg 19031 Abelcabl 19748 LModclmod 20755 ℤringczring 21389 ℤModczlm 21443 normcnm 24529 NrmModcnlm 24533 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 ax-pre-sup 11218 ax-addf 11219 ax-mulf 11220 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-sup 9467 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-div 11904 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12506 df-z 12592 df-dec 12711 df-uz 12856 df-rp 13010 df-fz 13520 df-fzo 13663 df-seq 14003 df-exp 14063 df-cj 15082 df-re 15083 df-im 15084 df-sqrt 15218 df-abs 15219 df-struct 17119 df-sets 17136 df-slot 17154 df-ndx 17166 df-base 17184 df-ress 17213 df-plusg 17249 df-mulr 17250 df-starv 17251 df-sca 17252 df-vsca 17253 df-ip 17254 df-tset 17255 df-ple 17256 df-ds 17258 df-unif 17259 df-0g 17426 df-mgm 18603 df-sgrp 18682 df-mnd 18698 df-grp 18901 df-minusg 18902 df-mulg 19032 df-subg 19086 df-cmn 19749 df-abl 19750 df-mgp 20087 df-rng 20105 df-ur 20134 df-ring 20187 df-cring 20188 df-subrng 20495 df-subrg 20520 df-lmod 20757 df-cnfld 21297 df-zring 21390 df-zlm 21447 df-nm 24535 df-nlm 24539 |
This theorem is referenced by: zrhnm 33701 |
Copyright terms: Public domain | W3C validator |