MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zlmsca Structured version   Visualization version   GIF version

Theorem zlmsca 21455
Description: Scalar ring of a -module. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 12-Jun-2019.) (Proof shortened by AV, 2-Nov-2024.)
Hypothesis
Ref Expression
zlmbas.w 𝑊 = (ℤMod‘𝐺)
Assertion
Ref Expression
zlmsca (𝐺𝑉 → ℤring = (Scalar‘𝑊))

Proof of Theorem zlmsca
StepHypRef Expression
1 scaid 17296 . . 3 Scalar = Slot (Scalar‘ndx)
2 vscandxnscandx 17305 . . . 4 ( ·𝑠 ‘ndx) ≠ (Scalar‘ndx)
32necomi 2985 . . 3 (Scalar‘ndx) ≠ ( ·𝑠 ‘ndx)
41, 3setsnid 17178 . 2 (Scalar‘(𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩)) = (Scalar‘((𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩) sSet ⟨( ·𝑠 ‘ndx), (.g𝐺)⟩))
5 zringring 21380 . . 3 ring ∈ Ring
61setsid 17177 . . 3 ((𝐺𝑉 ∧ ℤring ∈ Ring) → ℤring = (Scalar‘(𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩)))
75, 6mpan2 689 . 2 (𝐺𝑉 → ℤring = (Scalar‘(𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩)))
8 zlmbas.w . . . 4 𝑊 = (ℤMod‘𝐺)
9 eqid 2725 . . . 4 (.g𝐺) = (.g𝐺)
108, 9zlmval 21446 . . 3 (𝐺𝑉𝑊 = ((𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩) sSet ⟨( ·𝑠 ‘ndx), (.g𝐺)⟩))
1110fveq2d 6898 . 2 (𝐺𝑉 → (Scalar‘𝑊) = (Scalar‘((𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩) sSet ⟨( ·𝑠 ‘ndx), (.g𝐺)⟩)))
124, 7, 113eqtr4a 2791 1 (𝐺𝑉 → ℤring = (Scalar‘𝑊))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  cop 4635  cfv 6547  (class class class)co 7417   sSet csts 17132  ndxcnx 17162  Scalarcsca 17236   ·𝑠 cvsca 17237  .gcmg 19028  Ringcrg 20178  ringczring 21377  ℤModczlm 21431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5299  ax-nul 5306  ax-pow 5364  ax-pr 5428  ax-un 7739  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215  ax-addf 11217
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3965  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6499  df-fun 6549  df-fn 6550  df-f 6551  df-f1 6552  df-fo 6553  df-f1o 6554  df-fv 6555  df-riota 7373  df-ov 7420  df-oprab 7421  df-mpo 7422  df-om 7870  df-1st 7992  df-2nd 7993  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8723  df-en 8963  df-dom 8964  df-sdom 8965  df-fin 8966  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-nn 12243  df-2 12305  df-3 12306  df-4 12307  df-5 12308  df-6 12309  df-7 12310  df-8 12311  df-9 12312  df-n0 12503  df-z 12589  df-dec 12708  df-uz 12853  df-fz 13517  df-struct 17116  df-sets 17133  df-slot 17151  df-ndx 17163  df-base 17181  df-ress 17210  df-plusg 17246  df-mulr 17247  df-starv 17248  df-sca 17249  df-vsca 17250  df-tset 17252  df-ple 17253  df-ds 17255  df-unif 17256  df-0g 17423  df-mgm 18600  df-sgrp 18679  df-mnd 18695  df-grp 18898  df-minusg 18899  df-subg 19083  df-cmn 19742  df-abl 19743  df-mgp 20080  df-rng 20098  df-ur 20127  df-ring 20180  df-cring 20181  df-subrng 20488  df-subrg 20513  df-cnfld 21285  df-zring 21378  df-zlm 21435
This theorem is referenced by:  zlmlmod  21457  zlmassa  21841  zlmclm  25070  nmmulg  33656  cnzh  33658  rezh  33659
  Copyright terms: Public domain W3C validator
OSZAR »