![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > blennn0em1 | Structured version Visualization version GIF version |
Description: The binary length of the half of an even positive integer is the binary length of the integer minus 1. (Contributed by AV, 30-May-2010.) |
Ref | Expression |
---|---|
blennn0em1 | ⊢ ((𝑁 ∈ ℕ ∧ (𝑁 / 2) ∈ ℕ0) → (#b‘(𝑁 / 2)) = ((#b‘𝑁) − 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nncn 12244 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℂ) | |
2 | 2cnd 12314 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → 2 ∈ ℂ) | |
3 | 2ne0 12340 | . . . . . . . . 9 ⊢ 2 ≠ 0 | |
4 | 3 | a1i 11 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → 2 ≠ 0) |
5 | 1, 2, 4 | 3jca 1126 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → (𝑁 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0)) |
6 | 5 | adantr 480 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ (𝑁 / 2) ∈ ℕ0) → (𝑁 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0)) |
7 | divcan2 11904 | . . . . . . 7 ⊢ ((𝑁 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → (2 · (𝑁 / 2)) = 𝑁) | |
8 | 7 | eqcomd 2734 | . . . . . 6 ⊢ ((𝑁 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → 𝑁 = (2 · (𝑁 / 2))) |
9 | 6, 8 | syl 17 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ (𝑁 / 2) ∈ ℕ0) → 𝑁 = (2 · (𝑁 / 2))) |
10 | 9 | fveq2d 6895 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ (𝑁 / 2) ∈ ℕ0) → (#b‘𝑁) = (#b‘(2 · (𝑁 / 2)))) |
11 | nn0enne 16347 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ0 ↔ (𝑁 / 2) ∈ ℕ)) | |
12 | 11 | biimpa 476 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ (𝑁 / 2) ∈ ℕ0) → (𝑁 / 2) ∈ ℕ) |
13 | blennnt2 47656 | . . . . 5 ⊢ ((𝑁 / 2) ∈ ℕ → (#b‘(2 · (𝑁 / 2))) = ((#b‘(𝑁 / 2)) + 1)) | |
14 | 12, 13 | syl 17 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ (𝑁 / 2) ∈ ℕ0) → (#b‘(2 · (𝑁 / 2))) = ((#b‘(𝑁 / 2)) + 1)) |
15 | 10, 14 | eqtr2d 2769 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ (𝑁 / 2) ∈ ℕ0) → ((#b‘(𝑁 / 2)) + 1) = (#b‘𝑁)) |
16 | blennnelnn 47643 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (#b‘𝑁) ∈ ℕ) | |
17 | 16 | nncnd 12252 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (#b‘𝑁) ∈ ℂ) |
18 | 17 | adantr 480 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ (𝑁 / 2) ∈ ℕ0) → (#b‘𝑁) ∈ ℂ) |
19 | 1cnd 11233 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ (𝑁 / 2) ∈ ℕ0) → 1 ∈ ℂ) | |
20 | blennn0elnn 47644 | . . . . . 6 ⊢ ((𝑁 / 2) ∈ ℕ0 → (#b‘(𝑁 / 2)) ∈ ℕ) | |
21 | 20 | nncnd 12252 | . . . . 5 ⊢ ((𝑁 / 2) ∈ ℕ0 → (#b‘(𝑁 / 2)) ∈ ℂ) |
22 | 21 | adantl 481 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ (𝑁 / 2) ∈ ℕ0) → (#b‘(𝑁 / 2)) ∈ ℂ) |
23 | 18, 19, 22 | subadd2d 11614 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ (𝑁 / 2) ∈ ℕ0) → (((#b‘𝑁) − 1) = (#b‘(𝑁 / 2)) ↔ ((#b‘(𝑁 / 2)) + 1) = (#b‘𝑁))) |
24 | 15, 23 | mpbird 257 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ (𝑁 / 2) ∈ ℕ0) → ((#b‘𝑁) − 1) = (#b‘(𝑁 / 2))) |
25 | 24 | eqcomd 2734 | 1 ⊢ ((𝑁 ∈ ℕ ∧ (𝑁 / 2) ∈ ℕ0) → (#b‘(𝑁 / 2)) = ((#b‘𝑁) − 1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 ≠ wne 2936 ‘cfv 6542 (class class class)co 7414 ℂcc 11130 0cc0 11132 1c1 11133 + caddc 11135 · cmul 11137 − cmin 11468 / cdiv 11895 ℕcn 12236 2c2 12291 ℕ0cn0 12496 #bcblen 47636 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-inf2 9658 ax-cnex 11188 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 ax-pre-sup 11210 ax-addf 11211 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-iin 4994 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-of 7679 df-om 7865 df-1st 7987 df-2nd 7988 df-supp 8160 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8718 df-map 8840 df-pm 8841 df-ixp 8910 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-fsupp 9380 df-fi 9428 df-sup 9459 df-inf 9460 df-oi 9527 df-card 9956 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-div 11896 df-nn 12237 df-2 12299 df-3 12300 df-4 12301 df-5 12302 df-6 12303 df-7 12304 df-8 12305 df-9 12306 df-n0 12497 df-z 12583 df-dec 12702 df-uz 12847 df-q 12957 df-rp 13001 df-xneg 13118 df-xadd 13119 df-xmul 13120 df-ioo 13354 df-ioc 13355 df-ico 13356 df-icc 13357 df-fz 13511 df-fzo 13654 df-fl 13783 df-mod 13861 df-seq 13993 df-exp 14053 df-fac 14259 df-bc 14288 df-hash 14316 df-shft 15040 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-limsup 15441 df-clim 15458 df-rlim 15459 df-sum 15659 df-ef 16037 df-sin 16039 df-cos 16040 df-pi 16042 df-struct 17109 df-sets 17126 df-slot 17144 df-ndx 17156 df-base 17174 df-ress 17203 df-plusg 17239 df-mulr 17240 df-starv 17241 df-sca 17242 df-vsca 17243 df-ip 17244 df-tset 17245 df-ple 17246 df-ds 17248 df-unif 17249 df-hom 17250 df-cco 17251 df-rest 17397 df-topn 17398 df-0g 17416 df-gsum 17417 df-topgen 17418 df-pt 17419 df-prds 17422 df-xrs 17477 df-qtop 17482 df-imas 17483 df-xps 17485 df-mre 17559 df-mrc 17560 df-acs 17562 df-mgm 18593 df-sgrp 18672 df-mnd 18688 df-submnd 18734 df-mulg 19017 df-cntz 19261 df-cmn 19730 df-psmet 21264 df-xmet 21265 df-met 21266 df-bl 21267 df-mopn 21268 df-fbas 21269 df-fg 21270 df-cnfld 21273 df-top 22789 df-topon 22806 df-topsp 22828 df-bases 22842 df-cld 22916 df-ntr 22917 df-cls 22918 df-nei 22995 df-lp 23033 df-perf 23034 df-cn 23124 df-cnp 23125 df-haus 23212 df-tx 23459 df-hmeo 23652 df-fil 23743 df-fm 23835 df-flim 23836 df-flf 23837 df-xms 24219 df-ms 24220 df-tms 24221 df-cncf 24791 df-limc 25788 df-dv 25789 df-log 26483 df-logb 26690 df-blen 47637 |
This theorem is referenced by: blengt1fldiv2p1 47660 nn0sumshdiglemA 47686 |
Copyright terms: Public domain | W3C validator |