Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fiunelcarsg Structured version   Visualization version   GIF version

Theorem fiunelcarsg 33969
Description: The Caratheodory measurable sets are closed under finite union. (Contributed by Thierry Arnoux, 23-May-2020.)
Hypotheses
Ref Expression
carsgval.1 (𝜑𝑂𝑉)
carsgval.2 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
carsgsiga.1 (𝜑 → (𝑀‘∅) = 0)
carsgsiga.2 ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
fiunelcarsg.1 (𝜑𝐴 ∈ Fin)
fiunelcarsg.2 (𝜑𝐴 ⊆ (toCaraSiga‘𝑀))
Assertion
Ref Expression
fiunelcarsg (𝜑 𝐴 ∈ (toCaraSiga‘𝑀))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝑀,𝑦   𝑥,𝑂,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦)

Proof of Theorem fiunelcarsg
Dummy variables 𝑎 𝑒 𝑏 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unieq 4923 . . 3 (𝑎 = ∅ → 𝑎 = ∅)
2 eqidd 2729 . . 3 (𝑎 = ∅ → (toCaraSiga‘𝑀) = (toCaraSiga‘𝑀))
31, 2eleq12d 2823 . 2 (𝑎 = ∅ → ( 𝑎 ∈ (toCaraSiga‘𝑀) ↔ ∅ ∈ (toCaraSiga‘𝑀)))
4 unieq 4923 . . 3 (𝑎 = 𝑏 𝑎 = 𝑏)
5 eqidd 2729 . . 3 (𝑎 = 𝑏 → (toCaraSiga‘𝑀) = (toCaraSiga‘𝑀))
64, 5eleq12d 2823 . 2 (𝑎 = 𝑏 → ( 𝑎 ∈ (toCaraSiga‘𝑀) ↔ 𝑏 ∈ (toCaraSiga‘𝑀)))
7 unieq 4923 . . 3 (𝑎 = (𝑏 ∪ {𝑥}) → 𝑎 = (𝑏 ∪ {𝑥}))
8 eqidd 2729 . . 3 (𝑎 = (𝑏 ∪ {𝑥}) → (toCaraSiga‘𝑀) = (toCaraSiga‘𝑀))
97, 8eleq12d 2823 . 2 (𝑎 = (𝑏 ∪ {𝑥}) → ( 𝑎 ∈ (toCaraSiga‘𝑀) ↔ (𝑏 ∪ {𝑥}) ∈ (toCaraSiga‘𝑀)))
10 unieq 4923 . . 3 (𝑎 = 𝐴 𝑎 = 𝐴)
11 eqidd 2729 . . 3 (𝑎 = 𝐴 → (toCaraSiga‘𝑀) = (toCaraSiga‘𝑀))
1210, 11eleq12d 2823 . 2 (𝑎 = 𝐴 → ( 𝑎 ∈ (toCaraSiga‘𝑀) ↔ 𝐴 ∈ (toCaraSiga‘𝑀)))
13 uni0 4942 . . . 4 ∅ = ∅
14 difid 4374 . . . 4 (𝑂𝑂) = ∅
1513, 14eqtr4i 2759 . . 3 ∅ = (𝑂𝑂)
16 carsgval.1 . . . 4 (𝜑𝑂𝑉)
17 carsgval.2 . . . 4 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
18 carsgsiga.1 . . . . 5 (𝜑 → (𝑀‘∅) = 0)
1916, 17, 18baselcarsg 33959 . . . 4 (𝜑𝑂 ∈ (toCaraSiga‘𝑀))
2016, 17, 19difelcarsg 33963 . . 3 (𝜑 → (𝑂𝑂) ∈ (toCaraSiga‘𝑀))
2115, 20eqeltrid 2833 . 2 (𝜑 ∅ ∈ (toCaraSiga‘𝑀))
22 uniun 4937 . . . . 5 (𝑏 ∪ {𝑥}) = ( 𝑏 {𝑥})
23 unisnv 4934 . . . . . 6 {𝑥} = 𝑥
2423uneq2i 4161 . . . . 5 ( 𝑏 {𝑥}) = ( 𝑏𝑥)
2522, 24eqtri 2756 . . . 4 (𝑏 ∪ {𝑥}) = ( 𝑏𝑥)
2616ad2antrr 724 . . . . 5 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑏 ∈ (toCaraSiga‘𝑀)) → 𝑂𝑉)
2717ad2antrr 724 . . . . 5 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑏 ∈ (toCaraSiga‘𝑀)) → 𝑀:𝒫 𝑂⟶(0[,]+∞))
28 simpr 483 . . . . 5 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑏 ∈ (toCaraSiga‘𝑀)) → 𝑏 ∈ (toCaraSiga‘𝑀))
29 simpll 765 . . . . . 6 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑏 ∈ (toCaraSiga‘𝑀)) → 𝜑)
30 carsgsiga.2 . . . . . . 7 ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
3116, 17, 18, 30carsgsigalem 33968 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂) → (𝑀‘(𝑒𝑓)) ≤ ((𝑀𝑒) +𝑒 (𝑀𝑓)))
3229, 31syl3an1 1160 . . . . 5 ((((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑏 ∈ (toCaraSiga‘𝑀)) ∧ 𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂) → (𝑀‘(𝑒𝑓)) ≤ ((𝑀𝑒) +𝑒 (𝑀𝑓)))
33 fiunelcarsg.2 . . . . . . 7 (𝜑𝐴 ⊆ (toCaraSiga‘𝑀))
3433ad2antrr 724 . . . . . 6 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑏 ∈ (toCaraSiga‘𝑀)) → 𝐴 ⊆ (toCaraSiga‘𝑀))
35 simplrr 776 . . . . . . 7 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑏 ∈ (toCaraSiga‘𝑀)) → 𝑥 ∈ (𝐴𝑏))
3635eldifad 3961 . . . . . 6 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑏 ∈ (toCaraSiga‘𝑀)) → 𝑥𝐴)
3734, 36sseldd 3983 . . . . 5 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑏 ∈ (toCaraSiga‘𝑀)) → 𝑥 ∈ (toCaraSiga‘𝑀))
3826, 27, 28, 32, 37unelcarsg 33965 . . . 4 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑏 ∈ (toCaraSiga‘𝑀)) → ( 𝑏𝑥) ∈ (toCaraSiga‘𝑀))
3925, 38eqeltrid 2833 . . 3 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑏 ∈ (toCaraSiga‘𝑀)) → (𝑏 ∪ {𝑥}) ∈ (toCaraSiga‘𝑀))
4039ex 411 . 2 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → ( 𝑏 ∈ (toCaraSiga‘𝑀) → (𝑏 ∪ {𝑥}) ∈ (toCaraSiga‘𝑀)))
41 fiunelcarsg.1 . 2 (𝜑𝐴 ∈ Fin)
423, 6, 9, 12, 21, 40, 41findcard2d 9197 1 (𝜑 𝐴 ∈ (toCaraSiga‘𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  cdif 3946  cun 3947  wss 3949  c0 4326  𝒫 cpw 4606  {csn 4632   cuni 4912   class class class wbr 5152  wf 6549  cfv 6553  (class class class)co 7426  ωcom 7876  cdom 8968  Fincfn 8970  0cc0 11146  +∞cpnf 11283  cle 11287   +𝑒 cxad 13130  [,]cicc 13367  Σ*cesum 33679  toCaraSigaccarsg 33954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-inf2 9672  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223  ax-pre-sup 11224  ax-addf 11225  ax-mulf 11226
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-tp 4637  df-op 4639  df-uni 4913  df-int 4954  df-iun 5002  df-iin 5003  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-se 5638  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-isom 6562  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-of 7691  df-om 7877  df-1st 7999  df-2nd 8000  df-supp 8172  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-1o 8493  df-2o 8494  df-er 8731  df-map 8853  df-pm 8854  df-ixp 8923  df-en 8971  df-dom 8972  df-sdom 8973  df-fin 8974  df-fsupp 9394  df-fi 9442  df-sup 9473  df-inf 9474  df-oi 9541  df-dju 9932  df-card 9970  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-div 11910  df-nn 12251  df-2 12313  df-3 12314  df-4 12315  df-5 12316  df-6 12317  df-7 12318  df-8 12319  df-9 12320  df-n0 12511  df-z 12597  df-dec 12716  df-uz 12861  df-q 12971  df-rp 13015  df-xneg 13132  df-xadd 13133  df-xmul 13134  df-ioo 13368  df-ioc 13369  df-ico 13370  df-icc 13371  df-fz 13525  df-fzo 13668  df-fl 13797  df-mod 13875  df-seq 14007  df-exp 14067  df-fac 14273  df-bc 14302  df-hash 14330  df-shft 15054  df-cj 15086  df-re 15087  df-im 15088  df-sqrt 15222  df-abs 15223  df-limsup 15455  df-clim 15472  df-rlim 15473  df-sum 15673  df-ef 16051  df-sin 16053  df-cos 16054  df-pi 16056  df-struct 17123  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17188  df-ress 17217  df-plusg 17253  df-mulr 17254  df-starv 17255  df-sca 17256  df-vsca 17257  df-ip 17258  df-tset 17259  df-ple 17260  df-ds 17262  df-unif 17263  df-hom 17264  df-cco 17265  df-rest 17411  df-topn 17412  df-0g 17430  df-gsum 17431  df-topgen 17432  df-pt 17433  df-prds 17436  df-ordt 17490  df-xrs 17491  df-qtop 17496  df-imas 17497  df-xps 17499  df-mre 17573  df-mrc 17574  df-acs 17576  df-ps 18565  df-tsr 18566  df-plusf 18606  df-mgm 18607  df-sgrp 18686  df-mnd 18702  df-mhm 18747  df-submnd 18748  df-grp 18900  df-minusg 18901  df-sbg 18902  df-mulg 19031  df-subg 19085  df-cntz 19275  df-cmn 19744  df-abl 19745  df-mgp 20082  df-rng 20100  df-ur 20129  df-ring 20182  df-cring 20183  df-subrng 20490  df-subrg 20515  df-abv 20704  df-lmod 20752  df-scaf 20753  df-sra 21065  df-rgmod 21066  df-psmet 21278  df-xmet 21279  df-met 21280  df-bl 21281  df-mopn 21282  df-fbas 21283  df-fg 21284  df-cnfld 21287  df-top 22816  df-topon 22833  df-topsp 22855  df-bases 22869  df-cld 22943  df-ntr 22944  df-cls 22945  df-nei 23022  df-lp 23060  df-perf 23061  df-cn 23151  df-cnp 23152  df-haus 23239  df-tx 23486  df-hmeo 23679  df-fil 23770  df-fm 23862  df-flim 23863  df-flf 23864  df-tmd 23996  df-tgp 23997  df-tsms 24051  df-trg 24084  df-xms 24246  df-ms 24247  df-tms 24248  df-nm 24511  df-ngp 24512  df-nrg 24514  df-nlm 24515  df-ii 24817  df-cncf 24818  df-limc 25815  df-dv 25816  df-log 26510  df-esum 33680  df-carsg 33955
This theorem is referenced by:  carsgclctunlem1  33970  carsgclctunlem2  33972  carsgclctunlem3  33973
  Copyright terms: Public domain W3C validator
OSZAR »