![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fiunelcarsg | Structured version Visualization version GIF version |
Description: The Caratheodory measurable sets are closed under finite union. (Contributed by Thierry Arnoux, 23-May-2020.) |
Ref | Expression |
---|---|
carsgval.1 | ⊢ (𝜑 → 𝑂 ∈ 𝑉) |
carsgval.2 | ⊢ (𝜑 → 𝑀:𝒫 𝑂⟶(0[,]+∞)) |
carsgsiga.1 | ⊢ (𝜑 → (𝑀‘∅) = 0) |
carsgsiga.2 | ⊢ ((𝜑 ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀‘∪ 𝑥) ≤ Σ*𝑦 ∈ 𝑥(𝑀‘𝑦)) |
fiunelcarsg.1 | ⊢ (𝜑 → 𝐴 ∈ Fin) |
fiunelcarsg.2 | ⊢ (𝜑 → 𝐴 ⊆ (toCaraSiga‘𝑀)) |
Ref | Expression |
---|---|
fiunelcarsg | ⊢ (𝜑 → ∪ 𝐴 ∈ (toCaraSiga‘𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unieq 4923 | . . 3 ⊢ (𝑎 = ∅ → ∪ 𝑎 = ∪ ∅) | |
2 | eqidd 2729 | . . 3 ⊢ (𝑎 = ∅ → (toCaraSiga‘𝑀) = (toCaraSiga‘𝑀)) | |
3 | 1, 2 | eleq12d 2823 | . 2 ⊢ (𝑎 = ∅ → (∪ 𝑎 ∈ (toCaraSiga‘𝑀) ↔ ∪ ∅ ∈ (toCaraSiga‘𝑀))) |
4 | unieq 4923 | . . 3 ⊢ (𝑎 = 𝑏 → ∪ 𝑎 = ∪ 𝑏) | |
5 | eqidd 2729 | . . 3 ⊢ (𝑎 = 𝑏 → (toCaraSiga‘𝑀) = (toCaraSiga‘𝑀)) | |
6 | 4, 5 | eleq12d 2823 | . 2 ⊢ (𝑎 = 𝑏 → (∪ 𝑎 ∈ (toCaraSiga‘𝑀) ↔ ∪ 𝑏 ∈ (toCaraSiga‘𝑀))) |
7 | unieq 4923 | . . 3 ⊢ (𝑎 = (𝑏 ∪ {𝑥}) → ∪ 𝑎 = ∪ (𝑏 ∪ {𝑥})) | |
8 | eqidd 2729 | . . 3 ⊢ (𝑎 = (𝑏 ∪ {𝑥}) → (toCaraSiga‘𝑀) = (toCaraSiga‘𝑀)) | |
9 | 7, 8 | eleq12d 2823 | . 2 ⊢ (𝑎 = (𝑏 ∪ {𝑥}) → (∪ 𝑎 ∈ (toCaraSiga‘𝑀) ↔ ∪ (𝑏 ∪ {𝑥}) ∈ (toCaraSiga‘𝑀))) |
10 | unieq 4923 | . . 3 ⊢ (𝑎 = 𝐴 → ∪ 𝑎 = ∪ 𝐴) | |
11 | eqidd 2729 | . . 3 ⊢ (𝑎 = 𝐴 → (toCaraSiga‘𝑀) = (toCaraSiga‘𝑀)) | |
12 | 10, 11 | eleq12d 2823 | . 2 ⊢ (𝑎 = 𝐴 → (∪ 𝑎 ∈ (toCaraSiga‘𝑀) ↔ ∪ 𝐴 ∈ (toCaraSiga‘𝑀))) |
13 | uni0 4942 | . . . 4 ⊢ ∪ ∅ = ∅ | |
14 | difid 4374 | . . . 4 ⊢ (𝑂 ∖ 𝑂) = ∅ | |
15 | 13, 14 | eqtr4i 2759 | . . 3 ⊢ ∪ ∅ = (𝑂 ∖ 𝑂) |
16 | carsgval.1 | . . . 4 ⊢ (𝜑 → 𝑂 ∈ 𝑉) | |
17 | carsgval.2 | . . . 4 ⊢ (𝜑 → 𝑀:𝒫 𝑂⟶(0[,]+∞)) | |
18 | carsgsiga.1 | . . . . 5 ⊢ (𝜑 → (𝑀‘∅) = 0) | |
19 | 16, 17, 18 | baselcarsg 33959 | . . . 4 ⊢ (𝜑 → 𝑂 ∈ (toCaraSiga‘𝑀)) |
20 | 16, 17, 19 | difelcarsg 33963 | . . 3 ⊢ (𝜑 → (𝑂 ∖ 𝑂) ∈ (toCaraSiga‘𝑀)) |
21 | 15, 20 | eqeltrid 2833 | . 2 ⊢ (𝜑 → ∪ ∅ ∈ (toCaraSiga‘𝑀)) |
22 | uniun 4937 | . . . . 5 ⊢ ∪ (𝑏 ∪ {𝑥}) = (∪ 𝑏 ∪ ∪ {𝑥}) | |
23 | unisnv 4934 | . . . . . 6 ⊢ ∪ {𝑥} = 𝑥 | |
24 | 23 | uneq2i 4161 | . . . . 5 ⊢ (∪ 𝑏 ∪ ∪ {𝑥}) = (∪ 𝑏 ∪ 𝑥) |
25 | 22, 24 | eqtri 2756 | . . . 4 ⊢ ∪ (𝑏 ∪ {𝑥}) = (∪ 𝑏 ∪ 𝑥) |
26 | 16 | ad2antrr 724 | . . . . 5 ⊢ (((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) ∧ ∪ 𝑏 ∈ (toCaraSiga‘𝑀)) → 𝑂 ∈ 𝑉) |
27 | 17 | ad2antrr 724 | . . . . 5 ⊢ (((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) ∧ ∪ 𝑏 ∈ (toCaraSiga‘𝑀)) → 𝑀:𝒫 𝑂⟶(0[,]+∞)) |
28 | simpr 483 | . . . . 5 ⊢ (((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) ∧ ∪ 𝑏 ∈ (toCaraSiga‘𝑀)) → ∪ 𝑏 ∈ (toCaraSiga‘𝑀)) | |
29 | simpll 765 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) ∧ ∪ 𝑏 ∈ (toCaraSiga‘𝑀)) → 𝜑) | |
30 | carsgsiga.2 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀‘∪ 𝑥) ≤ Σ*𝑦 ∈ 𝑥(𝑀‘𝑦)) | |
31 | 16, 17, 18, 30 | carsgsigalem 33968 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) → (𝑀‘(𝑒 ∪ 𝑓)) ≤ ((𝑀‘𝑒) +𝑒 (𝑀‘𝑓))) |
32 | 29, 31 | syl3an1 1160 | . . . . 5 ⊢ ((((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) ∧ ∪ 𝑏 ∈ (toCaraSiga‘𝑀)) ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) → (𝑀‘(𝑒 ∪ 𝑓)) ≤ ((𝑀‘𝑒) +𝑒 (𝑀‘𝑓))) |
33 | fiunelcarsg.2 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ⊆ (toCaraSiga‘𝑀)) | |
34 | 33 | ad2antrr 724 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) ∧ ∪ 𝑏 ∈ (toCaraSiga‘𝑀)) → 𝐴 ⊆ (toCaraSiga‘𝑀)) |
35 | simplrr 776 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) ∧ ∪ 𝑏 ∈ (toCaraSiga‘𝑀)) → 𝑥 ∈ (𝐴 ∖ 𝑏)) | |
36 | 35 | eldifad 3961 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) ∧ ∪ 𝑏 ∈ (toCaraSiga‘𝑀)) → 𝑥 ∈ 𝐴) |
37 | 34, 36 | sseldd 3983 | . . . . 5 ⊢ (((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) ∧ ∪ 𝑏 ∈ (toCaraSiga‘𝑀)) → 𝑥 ∈ (toCaraSiga‘𝑀)) |
38 | 26, 27, 28, 32, 37 | unelcarsg 33965 | . . . 4 ⊢ (((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) ∧ ∪ 𝑏 ∈ (toCaraSiga‘𝑀)) → (∪ 𝑏 ∪ 𝑥) ∈ (toCaraSiga‘𝑀)) |
39 | 25, 38 | eqeltrid 2833 | . . 3 ⊢ (((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) ∧ ∪ 𝑏 ∈ (toCaraSiga‘𝑀)) → ∪ (𝑏 ∪ {𝑥}) ∈ (toCaraSiga‘𝑀)) |
40 | 39 | ex 411 | . 2 ⊢ ((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) → (∪ 𝑏 ∈ (toCaraSiga‘𝑀) → ∪ (𝑏 ∪ {𝑥}) ∈ (toCaraSiga‘𝑀))) |
41 | fiunelcarsg.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
42 | 3, 6, 9, 12, 21, 40, 41 | findcard2d 9197 | 1 ⊢ (𝜑 → ∪ 𝐴 ∈ (toCaraSiga‘𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∖ cdif 3946 ∪ cun 3947 ⊆ wss 3949 ∅c0 4326 𝒫 cpw 4606 {csn 4632 ∪ cuni 4912 class class class wbr 5152 ⟶wf 6549 ‘cfv 6553 (class class class)co 7426 ωcom 7876 ≼ cdom 8968 Fincfn 8970 0cc0 11146 +∞cpnf 11283 ≤ cle 11287 +𝑒 cxad 13130 [,]cicc 13367 Σ*cesum 33679 toCaraSigaccarsg 33954 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-inf2 9672 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 ax-pre-sup 11224 ax-addf 11225 ax-mulf 11226 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-tp 4637 df-op 4639 df-uni 4913 df-int 4954 df-iun 5002 df-iin 5003 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-se 5638 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-isom 6562 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-of 7691 df-om 7877 df-1st 7999 df-2nd 8000 df-supp 8172 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-1o 8493 df-2o 8494 df-er 8731 df-map 8853 df-pm 8854 df-ixp 8923 df-en 8971 df-dom 8972 df-sdom 8973 df-fin 8974 df-fsupp 9394 df-fi 9442 df-sup 9473 df-inf 9474 df-oi 9541 df-dju 9932 df-card 9970 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-div 11910 df-nn 12251 df-2 12313 df-3 12314 df-4 12315 df-5 12316 df-6 12317 df-7 12318 df-8 12319 df-9 12320 df-n0 12511 df-z 12597 df-dec 12716 df-uz 12861 df-q 12971 df-rp 13015 df-xneg 13132 df-xadd 13133 df-xmul 13134 df-ioo 13368 df-ioc 13369 df-ico 13370 df-icc 13371 df-fz 13525 df-fzo 13668 df-fl 13797 df-mod 13875 df-seq 14007 df-exp 14067 df-fac 14273 df-bc 14302 df-hash 14330 df-shft 15054 df-cj 15086 df-re 15087 df-im 15088 df-sqrt 15222 df-abs 15223 df-limsup 15455 df-clim 15472 df-rlim 15473 df-sum 15673 df-ef 16051 df-sin 16053 df-cos 16054 df-pi 16056 df-struct 17123 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17188 df-ress 17217 df-plusg 17253 df-mulr 17254 df-starv 17255 df-sca 17256 df-vsca 17257 df-ip 17258 df-tset 17259 df-ple 17260 df-ds 17262 df-unif 17263 df-hom 17264 df-cco 17265 df-rest 17411 df-topn 17412 df-0g 17430 df-gsum 17431 df-topgen 17432 df-pt 17433 df-prds 17436 df-ordt 17490 df-xrs 17491 df-qtop 17496 df-imas 17497 df-xps 17499 df-mre 17573 df-mrc 17574 df-acs 17576 df-ps 18565 df-tsr 18566 df-plusf 18606 df-mgm 18607 df-sgrp 18686 df-mnd 18702 df-mhm 18747 df-submnd 18748 df-grp 18900 df-minusg 18901 df-sbg 18902 df-mulg 19031 df-subg 19085 df-cntz 19275 df-cmn 19744 df-abl 19745 df-mgp 20082 df-rng 20100 df-ur 20129 df-ring 20182 df-cring 20183 df-subrng 20490 df-subrg 20515 df-abv 20704 df-lmod 20752 df-scaf 20753 df-sra 21065 df-rgmod 21066 df-psmet 21278 df-xmet 21279 df-met 21280 df-bl 21281 df-mopn 21282 df-fbas 21283 df-fg 21284 df-cnfld 21287 df-top 22816 df-topon 22833 df-topsp 22855 df-bases 22869 df-cld 22943 df-ntr 22944 df-cls 22945 df-nei 23022 df-lp 23060 df-perf 23061 df-cn 23151 df-cnp 23152 df-haus 23239 df-tx 23486 df-hmeo 23679 df-fil 23770 df-fm 23862 df-flim 23863 df-flf 23864 df-tmd 23996 df-tgp 23997 df-tsms 24051 df-trg 24084 df-xms 24246 df-ms 24247 df-tms 24248 df-nm 24511 df-ngp 24512 df-nrg 24514 df-nlm 24515 df-ii 24817 df-cncf 24818 df-limc 25815 df-dv 25816 df-log 26510 df-esum 33680 df-carsg 33955 |
This theorem is referenced by: carsgclctunlem1 33970 carsgclctunlem2 33972 carsgclctunlem3 33973 |
Copyright terms: Public domain | W3C validator |