MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  selberg Structured version   Visualization version   GIF version

Theorem selberg 27474
Description: Selberg's symmetry formula. The statement has many forms, and this one is equivalent to the statement that Σ𝑛𝑥, Λ(𝑛)log𝑛 + Σ𝑚 · 𝑛𝑥, Λ(𝑚)Λ(𝑛) = 2𝑥log𝑥 + 𝑂(𝑥). Equation 10.4.10 of [Shapiro], p. 419. (Contributed by Mario Carneiro, 23-May-2016.)
Assertion
Ref Expression
selberg (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) − (2 · (log‘𝑥)))) ∈ 𝑂(1)
Distinct variable group:   𝑥,𝑛

Proof of Theorem selberg
Dummy variables 𝑑 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6891 . . . . . . . . . . . . 13 (𝑛 = 𝑑 → (Λ‘𝑛) = (Λ‘𝑑))
2 oveq2 7422 . . . . . . . . . . . . . 14 (𝑛 = 𝑑 → (𝑥 / 𝑛) = (𝑥 / 𝑑))
32fveq2d 6895 . . . . . . . . . . . . 13 (𝑛 = 𝑑 → (ψ‘(𝑥 / 𝑛)) = (ψ‘(𝑥 / 𝑑)))
41, 3oveq12d 7432 . . . . . . . . . . . 12 (𝑛 = 𝑑 → ((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) = ((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑))))
54cbvsumv 15668 . . . . . . . . . . 11 Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) = Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))
6 fzfid 13964 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) → (1...(⌊‘(𝑥 / 𝑑))) ∈ Fin)
7 elfznn 13556 . . . . . . . . . . . . . . . . 17 (𝑑 ∈ (1...(⌊‘𝑥)) → 𝑑 ∈ ℕ)
87adantl 481 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) → 𝑑 ∈ ℕ)
9 vmacl 27043 . . . . . . . . . . . . . . . 16 (𝑑 ∈ ℕ → (Λ‘𝑑) ∈ ℝ)
108, 9syl 17 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑑) ∈ ℝ)
1110recnd 11266 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑑) ∈ ℂ)
12 elfznn 13556 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑))) → 𝑚 ∈ ℕ)
1312adantl 481 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → 𝑚 ∈ ℕ)
14 vmacl 27043 . . . . . . . . . . . . . . . 16 (𝑚 ∈ ℕ → (Λ‘𝑚) ∈ ℝ)
1513, 14syl 17 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → (Λ‘𝑚) ∈ ℝ)
1615recnd 11266 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → (Λ‘𝑚) ∈ ℂ)
176, 11, 16fsummulc2 15756 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑑) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))(Λ‘𝑚)) = Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((Λ‘𝑑) · (Λ‘𝑚)))
187nnrpd 13040 . . . . . . . . . . . . . . . . 17 (𝑑 ∈ (1...(⌊‘𝑥)) → 𝑑 ∈ ℝ+)
19 rpdivcl 13025 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ+𝑑 ∈ ℝ+) → (𝑥 / 𝑑) ∈ ℝ+)
2018, 19sylan2 592 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑑) ∈ ℝ+)
2120rpred 13042 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑑) ∈ ℝ)
22 chpval 27047 . . . . . . . . . . . . . . 15 ((𝑥 / 𝑑) ∈ ℝ → (ψ‘(𝑥 / 𝑑)) = Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))(Λ‘𝑚))
2321, 22syl 17 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) → (ψ‘(𝑥 / 𝑑)) = Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))(Λ‘𝑚))
2423oveq2d 7430 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑))) = ((Λ‘𝑑) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))(Λ‘𝑚)))
2513nncnd 12252 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → 𝑚 ∈ ℂ)
267ad2antlr 726 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → 𝑑 ∈ ℕ)
2726nncnd 12252 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → 𝑑 ∈ ℂ)
2826nnne0d 12286 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → 𝑑 ≠ 0)
2925, 27, 28divcan3d 12019 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → ((𝑑 · 𝑚) / 𝑑) = 𝑚)
3029fveq2d 6895 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → (Λ‘((𝑑 · 𝑚) / 𝑑)) = (Λ‘𝑚))
3130oveq2d 7430 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → ((Λ‘𝑑) · (Λ‘((𝑑 · 𝑚) / 𝑑))) = ((Λ‘𝑑) · (Λ‘𝑚)))
3231sumeq2dv 15675 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((Λ‘𝑑) · (Λ‘((𝑑 · 𝑚) / 𝑑))) = Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((Λ‘𝑑) · (Λ‘𝑚)))
3317, 24, 323eqtr4d 2778 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑))) = Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((Λ‘𝑑) · (Λ‘((𝑑 · 𝑚) / 𝑑))))
3433sumeq2dv 15675 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑))) = Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((Λ‘𝑑) · (Λ‘((𝑑 · 𝑚) / 𝑑))))
355, 34eqtrid 2780 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) = Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((Λ‘𝑑) · (Λ‘((𝑑 · 𝑚) / 𝑑))))
36 fvoveq1 7437 . . . . . . . . . . . 12 (𝑛 = (𝑑 · 𝑚) → (Λ‘(𝑛 / 𝑑)) = (Λ‘((𝑑 · 𝑚) / 𝑑)))
3736oveq2d 7430 . . . . . . . . . . 11 (𝑛 = (𝑑 · 𝑚) → ((Λ‘𝑑) · (Λ‘(𝑛 / 𝑑))) = ((Λ‘𝑑) · (Λ‘((𝑑 · 𝑚) / 𝑑))))
38 rpre 13008 . . . . . . . . . . 11 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
39 ssrab2 4073 . . . . . . . . . . . . . . . . 17 {𝑦 ∈ ℕ ∣ 𝑦𝑛} ⊆ ℕ
40 simprr 772 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ+ ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})) → 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})
4139, 40sselid 3976 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ+ ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})) → 𝑑 ∈ ℕ)
4241anassrs 467 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛}) → 𝑑 ∈ ℕ)
4342, 9syl 17 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛}) → (Λ‘𝑑) ∈ ℝ)
44 elfznn 13556 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℕ)
4544adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ)
46 dvdsdivcl 16286 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℕ ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛}) → (𝑛 / 𝑑) ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})
4745, 46sylan 579 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛}) → (𝑛 / 𝑑) ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})
4839, 47sselid 3976 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛}) → (𝑛 / 𝑑) ∈ ℕ)
49 vmacl 27043 . . . . . . . . . . . . . . 15 ((𝑛 / 𝑑) ∈ ℕ → (Λ‘(𝑛 / 𝑑)) ∈ ℝ)
5048, 49syl 17 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛}) → (Λ‘(𝑛 / 𝑑)) ∈ ℝ)
5143, 50remulcld 11268 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛}) → ((Λ‘𝑑) · (Λ‘(𝑛 / 𝑑))) ∈ ℝ)
5251recnd 11266 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛}) → ((Λ‘𝑑) · (Λ‘(𝑛 / 𝑑))) ∈ ℂ)
5352anasss 466 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+ ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})) → ((Λ‘𝑑) · (Λ‘(𝑛 / 𝑑))) ∈ ℂ)
5437, 38, 53dvdsflsumcom 27113 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑑) · (Λ‘(𝑛 / 𝑑))) = Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((Λ‘𝑑) · (Λ‘((𝑑 · 𝑚) / 𝑑))))
5535, 54eqtr4d 2771 . . . . . . . . 9 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) = Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑑) · (Λ‘(𝑛 / 𝑑))))
5655oveq1d 7429 . . . . . . . 8 (𝑥 ∈ ℝ+ → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) + Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (log‘𝑛))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑑) · (Λ‘(𝑛 / 𝑑))) + Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (log‘𝑛))))
57 fzfid 13964 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (1...(⌊‘𝑥)) ∈ Fin)
58 vmacl 27043 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (Λ‘𝑛) ∈ ℝ)
5945, 58syl 17 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑛) ∈ ℝ)
6059recnd 11266 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑛) ∈ ℂ)
6144nnrpd 13040 . . . . . . . . . . . . . 14 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℝ+)
62 rpdivcl 13025 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ+𝑛 ∈ ℝ+) → (𝑥 / 𝑛) ∈ ℝ+)
6361, 62sylan2 592 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℝ+)
6463rpred 13042 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℝ)
65 chpcl 27049 . . . . . . . . . . . 12 ((𝑥 / 𝑛) ∈ ℝ → (ψ‘(𝑥 / 𝑛)) ∈ ℝ)
6664, 65syl 17 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (ψ‘(𝑥 / 𝑛)) ∈ ℝ)
6766recnd 11266 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (ψ‘(𝑥 / 𝑛)) ∈ ℂ)
6860, 67mulcld 11258 . . . . . . . . 9 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) ∈ ℂ)
6945nnrpd 13040 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℝ+)
70 relogcl 26502 . . . . . . . . . . . 12 (𝑛 ∈ ℝ+ → (log‘𝑛) ∈ ℝ)
7169, 70syl 17 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (log‘𝑛) ∈ ℝ)
7271recnd 11266 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (log‘𝑛) ∈ ℂ)
7360, 72mulcld 11258 . . . . . . . . 9 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · (log‘𝑛)) ∈ ℂ)
7457, 68, 73fsumadd 15712 . . . . . . . 8 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) + ((Λ‘𝑛) · (log‘𝑛))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) + Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (log‘𝑛))))
75 fzfid 13964 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (1...𝑛) ∈ Fin)
76 dvdsssfz1 16288 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → {𝑦 ∈ ℕ ∣ 𝑦𝑛} ⊆ (1...𝑛))
7745, 76syl 17 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → {𝑦 ∈ ℕ ∣ 𝑦𝑛} ⊆ (1...𝑛))
7875, 77ssfid 9285 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → {𝑦 ∈ ℕ ∣ 𝑦𝑛} ∈ Fin)
7978, 51fsumrecl 15706 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑑) · (Λ‘(𝑛 / 𝑑))) ∈ ℝ)
8079recnd 11266 . . . . . . . . 9 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑑) · (Λ‘(𝑛 / 𝑑))) ∈ ℂ)
8157, 80, 73fsumadd 15712 . . . . . . . 8 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))(Σ𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑑) · (Λ‘(𝑛 / 𝑑))) + ((Λ‘𝑛) · (log‘𝑛))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑑) · (Λ‘(𝑛 / 𝑑))) + Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (log‘𝑛))))
8256, 74, 813eqtr4d 2778 . . . . . . 7 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) + ((Λ‘𝑛) · (log‘𝑛))) = Σ𝑛 ∈ (1...(⌊‘𝑥))(Σ𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑑) · (Λ‘(𝑛 / 𝑑))) + ((Λ‘𝑛) · (log‘𝑛))))
8372, 67addcomd 11440 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((log‘𝑛) + (ψ‘(𝑥 / 𝑛))) = ((ψ‘(𝑥 / 𝑛)) + (log‘𝑛)))
8483oveq2d 7430 . . . . . . . . 9 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) = ((Λ‘𝑛) · ((ψ‘(𝑥 / 𝑛)) + (log‘𝑛))))
8560, 67, 72adddid 11262 . . . . . . . . 9 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · ((ψ‘(𝑥 / 𝑛)) + (log‘𝑛))) = (((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) + ((Λ‘𝑛) · (log‘𝑛))))
8684, 85eqtrd 2768 . . . . . . . 8 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) = (((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) + ((Λ‘𝑛) · (log‘𝑛))))
8786sumeq2dv 15675 . . . . . . 7 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) = Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) + ((Λ‘𝑛) · (log‘𝑛))))
88 logsqvma2 27469 . . . . . . . . 9 (𝑛 ∈ ℕ → Σ𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((μ‘𝑑) · ((log‘(𝑛 / 𝑑))↑2)) = (Σ𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑑) · (Λ‘(𝑛 / 𝑑))) + ((Λ‘𝑛) · (log‘𝑛))))
8945, 88syl 17 . . . . . . . 8 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((μ‘𝑑) · ((log‘(𝑛 / 𝑑))↑2)) = (Σ𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑑) · (Λ‘(𝑛 / 𝑑))) + ((Λ‘𝑛) · (log‘𝑛))))
9089sumeq2dv 15675 . . . . . . 7 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((μ‘𝑑) · ((log‘(𝑛 / 𝑑))↑2)) = Σ𝑛 ∈ (1...(⌊‘𝑥))(Σ𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑑) · (Λ‘(𝑛 / 𝑑))) + ((Λ‘𝑛) · (log‘𝑛))))
9182, 87, 903eqtr4d 2778 . . . . . 6 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) = Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((μ‘𝑑) · ((log‘(𝑛 / 𝑑))↑2)))
92 fvoveq1 7437 . . . . . . . . 9 (𝑛 = (𝑑 · 𝑚) → (log‘(𝑛 / 𝑑)) = (log‘((𝑑 · 𝑚) / 𝑑)))
9392oveq1d 7429 . . . . . . . 8 (𝑛 = (𝑑 · 𝑚) → ((log‘(𝑛 / 𝑑))↑2) = ((log‘((𝑑 · 𝑚) / 𝑑))↑2))
9493oveq2d 7430 . . . . . . 7 (𝑛 = (𝑑 · 𝑚) → ((μ‘𝑑) · ((log‘(𝑛 / 𝑑))↑2)) = ((μ‘𝑑) · ((log‘((𝑑 · 𝑚) / 𝑑))↑2)))
95 mucl 27066 . . . . . . . . . 10 (𝑑 ∈ ℕ → (μ‘𝑑) ∈ ℤ)
9641, 95syl 17 . . . . . . . . 9 ((𝑥 ∈ ℝ+ ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})) → (μ‘𝑑) ∈ ℤ)
9796zcnd 12691 . . . . . . . 8 ((𝑥 ∈ ℝ+ ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})) → (μ‘𝑑) ∈ ℂ)
9861ad2antrl 727 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+ ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})) → 𝑛 ∈ ℝ+)
9941nnrpd 13040 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+ ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})) → 𝑑 ∈ ℝ+)
10098, 99rpdivcld 13059 . . . . . . . . . 10 ((𝑥 ∈ ℝ+ ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})) → (𝑛 / 𝑑) ∈ ℝ+)
101 relogcl 26502 . . . . . . . . . . 11 ((𝑛 / 𝑑) ∈ ℝ+ → (log‘(𝑛 / 𝑑)) ∈ ℝ)
102101recnd 11266 . . . . . . . . . 10 ((𝑛 / 𝑑) ∈ ℝ+ → (log‘(𝑛 / 𝑑)) ∈ ℂ)
103100, 102syl 17 . . . . . . . . 9 ((𝑥 ∈ ℝ+ ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})) → (log‘(𝑛 / 𝑑)) ∈ ℂ)
104103sqcld 14134 . . . . . . . 8 ((𝑥 ∈ ℝ+ ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})) → ((log‘(𝑛 / 𝑑))↑2) ∈ ℂ)
10597, 104mulcld 11258 . . . . . . 7 ((𝑥 ∈ ℝ+ ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})) → ((μ‘𝑑) · ((log‘(𝑛 / 𝑑))↑2)) ∈ ℂ)
10694, 38, 105dvdsflsumcom 27113 . . . . . 6 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((μ‘𝑑) · ((log‘(𝑛 / 𝑑))↑2)) = Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((μ‘𝑑) · ((log‘((𝑑 · 𝑚) / 𝑑))↑2)))
10729fveq2d 6895 . . . . . . . . . 10 (((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → (log‘((𝑑 · 𝑚) / 𝑑)) = (log‘𝑚))
108107oveq1d 7429 . . . . . . . . 9 (((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → ((log‘((𝑑 · 𝑚) / 𝑑))↑2) = ((log‘𝑚)↑2))
109108oveq2d 7430 . . . . . . . 8 (((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → ((μ‘𝑑) · ((log‘((𝑑 · 𝑚) / 𝑑))↑2)) = ((μ‘𝑑) · ((log‘𝑚)↑2)))
110109sumeq2dv 15675 . . . . . . 7 ((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((μ‘𝑑) · ((log‘((𝑑 · 𝑚) / 𝑑))↑2)) = Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((μ‘𝑑) · ((log‘𝑚)↑2)))
111110sumeq2dv 15675 . . . . . 6 (𝑥 ∈ ℝ+ → Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((μ‘𝑑) · ((log‘((𝑑 · 𝑚) / 𝑑))↑2)) = Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((μ‘𝑑) · ((log‘𝑚)↑2)))
11291, 106, 1113eqtrd 2772 . . . . 5 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) = Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((μ‘𝑑) · ((log‘𝑚)↑2)))
113112oveq1d 7429 . . . 4 (𝑥 ∈ ℝ+ → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) = (Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((μ‘𝑑) · ((log‘𝑚)↑2)) / 𝑥))
114113oveq1d 7429 . . 3 (𝑥 ∈ ℝ+ → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) − (2 · (log‘𝑥))) = ((Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((μ‘𝑑) · ((log‘𝑚)↑2)) / 𝑥) − (2 · (log‘𝑥))))
115114mpteq2ia 5245 . 2 (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) − (2 · (log‘𝑥)))) = (𝑥 ∈ ℝ+ ↦ ((Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((μ‘𝑑) · ((log‘𝑚)↑2)) / 𝑥) − (2 · (log‘𝑥))))
116 eqid 2728 . . 3 ((((log‘(𝑥 / 𝑑))↑2) + (2 − (2 · (log‘(𝑥 / 𝑑))))) / 𝑑) = ((((log‘(𝑥 / 𝑑))↑2) + (2 − (2 · (log‘(𝑥 / 𝑑))))) / 𝑑)
117116selberglem2 27472 . 2 (𝑥 ∈ ℝ+ ↦ ((Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((μ‘𝑑) · ((log‘𝑚)↑2)) / 𝑥) − (2 · (log‘𝑥)))) ∈ 𝑂(1)
118115, 117eqeltri 2825 1 (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) − (2 · (log‘𝑥)))) ∈ 𝑂(1)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1534  wcel 2099  {crab 3428  wss 3945   class class class wbr 5142  cmpt 5225  cfv 6542  (class class class)co 7414  cc 11130  cr 11131  1c1 11133   + caddc 11135   · cmul 11137  cmin 11468   / cdiv 11895  cn 12236  2c2 12291  cz 12582  +crp 13000  ...cfz 13510  cfl 13781  cexp 14052  𝑂(1)co1 15456  Σcsu 15658  cdvds 16224  logclog 26481  Λcvma 27017  ψcchp 27018  μcmu 27020
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-inf2 9658  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-pre-mulgt0 11209  ax-pre-sup 11210  ax-addf 11211
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-iin 4994  df-disj 5108  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-of 7679  df-om 7865  df-1st 7987  df-2nd 7988  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-er 8718  df-map 8840  df-pm 8841  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fsupp 9380  df-fi 9428  df-sup 9459  df-inf 9460  df-oi 9527  df-dju 9918  df-card 9956  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-sub 11470  df-neg 11471  df-div 11896  df-nn 12237  df-2 12299  df-3 12300  df-4 12301  df-5 12302  df-6 12303  df-7 12304  df-8 12305  df-9 12306  df-n0 12497  df-xnn0 12569  df-z 12583  df-dec 12702  df-uz 12847  df-q 12957  df-rp 13001  df-xneg 13118  df-xadd 13119  df-xmul 13120  df-ioo 13354  df-ioc 13355  df-ico 13356  df-icc 13357  df-fz 13511  df-fzo 13654  df-fl 13783  df-mod 13861  df-seq 13993  df-exp 14053  df-fac 14259  df-bc 14288  df-hash 14316  df-shft 15040  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15441  df-clim 15458  df-rlim 15459  df-o1 15460  df-lo1 15461  df-sum 15659  df-ef 16037  df-e 16038  df-sin 16039  df-cos 16040  df-tan 16041  df-pi 16042  df-dvds 16225  df-gcd 16463  df-prm 16636  df-pc 16799  df-struct 17109  df-sets 17126  df-slot 17144  df-ndx 17156  df-base 17174  df-ress 17203  df-plusg 17239  df-mulr 17240  df-starv 17241  df-sca 17242  df-vsca 17243  df-ip 17244  df-tset 17245  df-ple 17246  df-ds 17248  df-unif 17249  df-hom 17250  df-cco 17251  df-rest 17397  df-topn 17398  df-0g 17416  df-gsum 17417  df-topgen 17418  df-pt 17419  df-prds 17422  df-xrs 17477  df-qtop 17482  df-imas 17483  df-xps 17485  df-mre 17559  df-mrc 17560  df-acs 17562  df-mgm 18593  df-sgrp 18672  df-mnd 18688  df-submnd 18734  df-mulg 19017  df-cntz 19261  df-cmn 19730  df-psmet 21264  df-xmet 21265  df-met 21266  df-bl 21267  df-mopn 21268  df-fbas 21269  df-fg 21270  df-cnfld 21273  df-top 22789  df-topon 22806  df-topsp 22828  df-bases 22842  df-cld 22916  df-ntr 22917  df-cls 22918  df-nei 22995  df-lp 23033  df-perf 23034  df-cn 23124  df-cnp 23125  df-haus 23212  df-cmp 23284  df-tx 23459  df-hmeo 23652  df-fil 23743  df-fm 23835  df-flim 23836  df-flf 23837  df-xms 24219  df-ms 24220  df-tms 24221  df-cncf 24791  df-limc 25788  df-dv 25789  df-ulm 26306  df-log 26483  df-cxp 26484  df-atan 26792  df-em 26918  df-vma 27023  df-chp 27024  df-mu 27026
This theorem is referenced by:  selbergb  27475  selberg2  27477  selbergs  27500
  Copyright terms: Public domain W3C validator
OSZAR »