![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > stirlingr | Structured version Visualization version GIF version |
Description: Stirling's approximation formula for 𝑛 factorial: here convergence is expressed with respect to the standard topology on the reals. The main theorem stirling 45477 is proven for convergence in the topology of complex numbers. The variable 𝑅 is used to denote convergence with respect to the standard topology on the reals. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
Ref | Expression |
---|---|
stirlingr.1 | ⊢ 𝑆 = (𝑛 ∈ ℕ0 ↦ ((√‘((2 · π) · 𝑛)) · ((𝑛 / e)↑𝑛))) |
stirlingr.2 | ⊢ 𝑅 = (⇝𝑡‘(topGen‘ran (,))) |
Ref | Expression |
---|---|
stirlingr | ⊢ (𝑛 ∈ ℕ ↦ ((!‘𝑛) / (𝑆‘𝑛)))𝑅1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | stirlingr.1 | . . 3 ⊢ 𝑆 = (𝑛 ∈ ℕ0 ↦ ((√‘((2 · π) · 𝑛)) · ((𝑛 / e)↑𝑛))) | |
2 | 1 | stirling 45477 | . 2 ⊢ (𝑛 ∈ ℕ ↦ ((!‘𝑛) / (𝑆‘𝑛))) ⇝ 1 |
3 | stirlingr.2 | . . . 4 ⊢ 𝑅 = (⇝𝑡‘(topGen‘ran (,))) | |
4 | nnuz 12895 | . . . 4 ⊢ ℕ = (ℤ≥‘1) | |
5 | 1zzd 12623 | . . . 4 ⊢ (⊤ → 1 ∈ ℤ) | |
6 | eqid 2728 | . . . . . 6 ⊢ (𝑛 ∈ ℕ ↦ ((!‘𝑛) / (𝑆‘𝑛))) = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / (𝑆‘𝑛))) | |
7 | nnnn0 12509 | . . . . . . . 8 ⊢ (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0) | |
8 | faccl 14274 | . . . . . . . 8 ⊢ (𝑛 ∈ ℕ0 → (!‘𝑛) ∈ ℕ) | |
9 | nnre 12249 | . . . . . . . 8 ⊢ ((!‘𝑛) ∈ ℕ → (!‘𝑛) ∈ ℝ) | |
10 | 7, 8, 9 | 3syl 18 | . . . . . . 7 ⊢ (𝑛 ∈ ℕ → (!‘𝑛) ∈ ℝ) |
11 | 2re 12316 | . . . . . . . . . . . . . 14 ⊢ 2 ∈ ℝ | |
12 | 11 | a1i 11 | . . . . . . . . . . . . 13 ⊢ (𝑛 ∈ ℕ → 2 ∈ ℝ) |
13 | pire 26392 | . . . . . . . . . . . . . 14 ⊢ π ∈ ℝ | |
14 | 13 | a1i 11 | . . . . . . . . . . . . 13 ⊢ (𝑛 ∈ ℕ → π ∈ ℝ) |
15 | 12, 14 | remulcld 11274 | . . . . . . . . . . . 12 ⊢ (𝑛 ∈ ℕ → (2 · π) ∈ ℝ) |
16 | nnre 12249 | . . . . . . . . . . . 12 ⊢ (𝑛 ∈ ℕ → 𝑛 ∈ ℝ) | |
17 | 15, 16 | remulcld 11274 | . . . . . . . . . . 11 ⊢ (𝑛 ∈ ℕ → ((2 · π) · 𝑛) ∈ ℝ) |
18 | 0re 11246 | . . . . . . . . . . . . . . 15 ⊢ 0 ∈ ℝ | |
19 | 18 | a1i 11 | . . . . . . . . . . . . . 14 ⊢ (𝑛 ∈ ℕ → 0 ∈ ℝ) |
20 | 2pos 12345 | . . . . . . . . . . . . . . 15 ⊢ 0 < 2 | |
21 | 20 | a1i 11 | . . . . . . . . . . . . . 14 ⊢ (𝑛 ∈ ℕ → 0 < 2) |
22 | 19, 12, 21 | ltled 11392 | . . . . . . . . . . . . 13 ⊢ (𝑛 ∈ ℕ → 0 ≤ 2) |
23 | pipos 26394 | . . . . . . . . . . . . . . 15 ⊢ 0 < π | |
24 | 18, 13, 23 | ltleii 11367 | . . . . . . . . . . . . . 14 ⊢ 0 ≤ π |
25 | 24 | a1i 11 | . . . . . . . . . . . . 13 ⊢ (𝑛 ∈ ℕ → 0 ≤ π) |
26 | 12, 14, 22, 25 | mulge0d 11821 | . . . . . . . . . . . 12 ⊢ (𝑛 ∈ ℕ → 0 ≤ (2 · π)) |
27 | 7 | nn0ge0d 12565 | . . . . . . . . . . . 12 ⊢ (𝑛 ∈ ℕ → 0 ≤ 𝑛) |
28 | 15, 16, 26, 27 | mulge0d 11821 | . . . . . . . . . . 11 ⊢ (𝑛 ∈ ℕ → 0 ≤ ((2 · π) · 𝑛)) |
29 | 17, 28 | resqrtcld 15396 | . . . . . . . . . 10 ⊢ (𝑛 ∈ ℕ → (√‘((2 · π) · 𝑛)) ∈ ℝ) |
30 | ere 16065 | . . . . . . . . . . . . 13 ⊢ e ∈ ℝ | |
31 | 30 | a1i 11 | . . . . . . . . . . . 12 ⊢ (𝑛 ∈ ℕ → e ∈ ℝ) |
32 | epos 16183 | . . . . . . . . . . . . . 14 ⊢ 0 < e | |
33 | 18, 32 | gtneii 11356 | . . . . . . . . . . . . 13 ⊢ e ≠ 0 |
34 | 33 | a1i 11 | . . . . . . . . . . . 12 ⊢ (𝑛 ∈ ℕ → e ≠ 0) |
35 | 16, 31, 34 | redivcld 12072 | . . . . . . . . . . 11 ⊢ (𝑛 ∈ ℕ → (𝑛 / e) ∈ ℝ) |
36 | 35, 7 | reexpcld 14159 | . . . . . . . . . 10 ⊢ (𝑛 ∈ ℕ → ((𝑛 / e)↑𝑛) ∈ ℝ) |
37 | 29, 36 | remulcld 11274 | . . . . . . . . 9 ⊢ (𝑛 ∈ ℕ → ((√‘((2 · π) · 𝑛)) · ((𝑛 / e)↑𝑛)) ∈ ℝ) |
38 | 1 | fvmpt2 7016 | . . . . . . . . 9 ⊢ ((𝑛 ∈ ℕ0 ∧ ((√‘((2 · π) · 𝑛)) · ((𝑛 / e)↑𝑛)) ∈ ℝ) → (𝑆‘𝑛) = ((√‘((2 · π) · 𝑛)) · ((𝑛 / e)↑𝑛))) |
39 | 7, 37, 38 | syl2anc 583 | . . . . . . . 8 ⊢ (𝑛 ∈ ℕ → (𝑆‘𝑛) = ((√‘((2 · π) · 𝑛)) · ((𝑛 / e)↑𝑛))) |
40 | 2rp 13011 | . . . . . . . . . . . . 13 ⊢ 2 ∈ ℝ+ | |
41 | 40 | a1i 11 | . . . . . . . . . . . 12 ⊢ (𝑛 ∈ ℕ → 2 ∈ ℝ+) |
42 | pirp 26395 | . . . . . . . . . . . . 13 ⊢ π ∈ ℝ+ | |
43 | 42 | a1i 11 | . . . . . . . . . . . 12 ⊢ (𝑛 ∈ ℕ → π ∈ ℝ+) |
44 | 41, 43 | rpmulcld 13064 | . . . . . . . . . . 11 ⊢ (𝑛 ∈ ℕ → (2 · π) ∈ ℝ+) |
45 | nnrp 13017 | . . . . . . . . . . 11 ⊢ (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+) | |
46 | 44, 45 | rpmulcld 13064 | . . . . . . . . . 10 ⊢ (𝑛 ∈ ℕ → ((2 · π) · 𝑛) ∈ ℝ+) |
47 | 46 | rpsqrtcld 15390 | . . . . . . . . 9 ⊢ (𝑛 ∈ ℕ → (√‘((2 · π) · 𝑛)) ∈ ℝ+) |
48 | epr 16184 | . . . . . . . . . . . 12 ⊢ e ∈ ℝ+ | |
49 | 48 | a1i 11 | . . . . . . . . . . 11 ⊢ (𝑛 ∈ ℕ → e ∈ ℝ+) |
50 | 45, 49 | rpdivcld 13065 | . . . . . . . . . 10 ⊢ (𝑛 ∈ ℕ → (𝑛 / e) ∈ ℝ+) |
51 | nnz 12609 | . . . . . . . . . 10 ⊢ (𝑛 ∈ ℕ → 𝑛 ∈ ℤ) | |
52 | 50, 51 | rpexpcld 14241 | . . . . . . . . 9 ⊢ (𝑛 ∈ ℕ → ((𝑛 / e)↑𝑛) ∈ ℝ+) |
53 | 47, 52 | rpmulcld 13064 | . . . . . . . 8 ⊢ (𝑛 ∈ ℕ → ((√‘((2 · π) · 𝑛)) · ((𝑛 / e)↑𝑛)) ∈ ℝ+) |
54 | 39, 53 | eqeltrd 2829 | . . . . . . 7 ⊢ (𝑛 ∈ ℕ → (𝑆‘𝑛) ∈ ℝ+) |
55 | 10, 54 | rerpdivcld 13079 | . . . . . 6 ⊢ (𝑛 ∈ ℕ → ((!‘𝑛) / (𝑆‘𝑛)) ∈ ℝ) |
56 | 6, 55 | fmpti 7122 | . . . . 5 ⊢ (𝑛 ∈ ℕ ↦ ((!‘𝑛) / (𝑆‘𝑛))):ℕ⟶ℝ |
57 | 56 | a1i 11 | . . . 4 ⊢ (⊤ → (𝑛 ∈ ℕ ↦ ((!‘𝑛) / (𝑆‘𝑛))):ℕ⟶ℝ) |
58 | 3, 4, 5, 57 | climreeq 45001 | . . 3 ⊢ (⊤ → ((𝑛 ∈ ℕ ↦ ((!‘𝑛) / (𝑆‘𝑛)))𝑅1 ↔ (𝑛 ∈ ℕ ↦ ((!‘𝑛) / (𝑆‘𝑛))) ⇝ 1)) |
59 | 58 | mptru 1541 | . 2 ⊢ ((𝑛 ∈ ℕ ↦ ((!‘𝑛) / (𝑆‘𝑛)))𝑅1 ↔ (𝑛 ∈ ℕ ↦ ((!‘𝑛) / (𝑆‘𝑛))) ⇝ 1) |
60 | 2, 59 | mpbir 230 | 1 ⊢ (𝑛 ∈ ℕ ↦ ((!‘𝑛) / (𝑆‘𝑛)))𝑅1 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1534 ⊤wtru 1535 ∈ wcel 2099 ≠ wne 2937 class class class wbr 5148 ↦ cmpt 5231 ran crn 5679 ⟶wf 6544 ‘cfv 6548 (class class class)co 7420 ℝcr 11137 0cc0 11138 1c1 11139 · cmul 11143 < clt 11278 ≤ cle 11279 / cdiv 11901 ℕcn 12242 2c2 12297 ℕ0cn0 12502 ℝ+crp 13006 (,)cioo 13356 ↑cexp 14058 !cfa 14264 √csqrt 15212 ⇝ cli 15460 eceu 16038 πcpi 16042 topGenctg 17418 ⇝𝑡clm 23129 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-inf2 9664 ax-cc 10458 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-pre-sup 11216 ax-addf 11217 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-symdif 4243 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-iin 4999 df-disj 5114 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-isom 6557 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-of 7685 df-ofr 7686 df-om 7871 df-1st 7993 df-2nd 7994 df-supp 8166 df-frecs 8286 df-wrecs 8317 df-recs 8391 df-rdg 8430 df-1o 8486 df-2o 8487 df-oadd 8490 df-omul 8491 df-er 8724 df-map 8846 df-pm 8847 df-ixp 8916 df-en 8964 df-dom 8965 df-sdom 8966 df-fin 8967 df-fsupp 9386 df-fi 9434 df-sup 9465 df-inf 9466 df-oi 9533 df-dju 9924 df-card 9962 df-acn 9965 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-div 11902 df-nn 12243 df-2 12305 df-3 12306 df-4 12307 df-5 12308 df-6 12309 df-7 12310 df-8 12311 df-9 12312 df-n0 12503 df-xnn0 12575 df-z 12589 df-dec 12708 df-uz 12853 df-q 12963 df-rp 13007 df-xneg 13124 df-xadd 13125 df-xmul 13126 df-ioo 13360 df-ioc 13361 df-ico 13362 df-icc 13363 df-fz 13517 df-fzo 13660 df-fl 13789 df-mod 13867 df-seq 13999 df-exp 14059 df-fac 14265 df-bc 14294 df-hash 14322 df-shft 15046 df-cj 15078 df-re 15079 df-im 15080 df-sqrt 15214 df-abs 15215 df-limsup 15447 df-clim 15464 df-rlim 15465 df-sum 15665 df-ef 16043 df-e 16044 df-sin 16045 df-cos 16046 df-tan 16047 df-pi 16048 df-dvds 16231 df-struct 17115 df-sets 17132 df-slot 17150 df-ndx 17162 df-base 17180 df-ress 17209 df-plusg 17245 df-mulr 17246 df-starv 17247 df-sca 17248 df-vsca 17249 df-ip 17250 df-tset 17251 df-ple 17252 df-ds 17254 df-unif 17255 df-hom 17256 df-cco 17257 df-rest 17403 df-topn 17404 df-0g 17422 df-gsum 17423 df-topgen 17424 df-pt 17425 df-prds 17428 df-xrs 17483 df-qtop 17488 df-imas 17489 df-xps 17491 df-mre 17565 df-mrc 17566 df-acs 17568 df-mgm 18599 df-sgrp 18678 df-mnd 18694 df-submnd 18740 df-mulg 19023 df-cntz 19267 df-cmn 19736 df-psmet 21270 df-xmet 21271 df-met 21272 df-bl 21273 df-mopn 21274 df-fbas 21275 df-fg 21276 df-cnfld 21279 df-top 22795 df-topon 22812 df-topsp 22834 df-bases 22848 df-cld 22922 df-ntr 22923 df-cls 22924 df-nei 23001 df-lp 23039 df-perf 23040 df-cn 23130 df-cnp 23131 df-lm 23132 df-haus 23218 df-cmp 23290 df-tx 23465 df-hmeo 23658 df-fil 23749 df-fm 23841 df-flim 23842 df-flf 23843 df-xms 24225 df-ms 24226 df-tms 24227 df-cncf 24797 df-ovol 25392 df-vol 25393 df-mbf 25547 df-itg1 25548 df-itg2 25549 df-ibl 25550 df-itg 25551 df-0p 25598 df-limc 25794 df-dv 25795 df-ulm 26312 df-log 26489 df-cxp 26490 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |