Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stirlingr Structured version   Visualization version   GIF version

Theorem stirlingr 45478
Description: Stirling's approximation formula for 𝑛 factorial: here convergence is expressed with respect to the standard topology on the reals. The main theorem stirling 45477 is proven for convergence in the topology of complex numbers. The variable 𝑅 is used to denote convergence with respect to the standard topology on the reals. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
stirlingr.1 𝑆 = (𝑛 ∈ ℕ0 ↦ ((√‘((2 · π) · 𝑛)) · ((𝑛 / e)↑𝑛)))
stirlingr.2 𝑅 = (⇝𝑡‘(topGen‘ran (,)))
Assertion
Ref Expression
stirlingr (𝑛 ∈ ℕ ↦ ((!‘𝑛) / (𝑆𝑛)))𝑅1

Proof of Theorem stirlingr
StepHypRef Expression
1 stirlingr.1 . . 3 𝑆 = (𝑛 ∈ ℕ0 ↦ ((√‘((2 · π) · 𝑛)) · ((𝑛 / e)↑𝑛)))
21stirling 45477 . 2 (𝑛 ∈ ℕ ↦ ((!‘𝑛) / (𝑆𝑛))) ⇝ 1
3 stirlingr.2 . . . 4 𝑅 = (⇝𝑡‘(topGen‘ran (,)))
4 nnuz 12895 . . . 4 ℕ = (ℤ‘1)
5 1zzd 12623 . . . 4 (⊤ → 1 ∈ ℤ)
6 eqid 2728 . . . . . 6 (𝑛 ∈ ℕ ↦ ((!‘𝑛) / (𝑆𝑛))) = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / (𝑆𝑛)))
7 nnnn0 12509 . . . . . . . 8 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
8 faccl 14274 . . . . . . . 8 (𝑛 ∈ ℕ0 → (!‘𝑛) ∈ ℕ)
9 nnre 12249 . . . . . . . 8 ((!‘𝑛) ∈ ℕ → (!‘𝑛) ∈ ℝ)
107, 8, 93syl 18 . . . . . . 7 (𝑛 ∈ ℕ → (!‘𝑛) ∈ ℝ)
11 2re 12316 . . . . . . . . . . . . . 14 2 ∈ ℝ
1211a1i 11 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → 2 ∈ ℝ)
13 pire 26392 . . . . . . . . . . . . . 14 π ∈ ℝ
1413a1i 11 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → π ∈ ℝ)
1512, 14remulcld 11274 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (2 · π) ∈ ℝ)
16 nnre 12249 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
1715, 16remulcld 11274 . . . . . . . . . . 11 (𝑛 ∈ ℕ → ((2 · π) · 𝑛) ∈ ℝ)
18 0re 11246 . . . . . . . . . . . . . . 15 0 ∈ ℝ
1918a1i 11 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → 0 ∈ ℝ)
20 2pos 12345 . . . . . . . . . . . . . . 15 0 < 2
2120a1i 11 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → 0 < 2)
2219, 12, 21ltled 11392 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → 0 ≤ 2)
23 pipos 26394 . . . . . . . . . . . . . . 15 0 < π
2418, 13, 23ltleii 11367 . . . . . . . . . . . . . 14 0 ≤ π
2524a1i 11 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → 0 ≤ π)
2612, 14, 22, 25mulge0d 11821 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 0 ≤ (2 · π))
277nn0ge0d 12565 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 0 ≤ 𝑛)
2815, 16, 26, 27mulge0d 11821 . . . . . . . . . . 11 (𝑛 ∈ ℕ → 0 ≤ ((2 · π) · 𝑛))
2917, 28resqrtcld 15396 . . . . . . . . . 10 (𝑛 ∈ ℕ → (√‘((2 · π) · 𝑛)) ∈ ℝ)
30 ere 16065 . . . . . . . . . . . . 13 e ∈ ℝ
3130a1i 11 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → e ∈ ℝ)
32 epos 16183 . . . . . . . . . . . . . 14 0 < e
3318, 32gtneii 11356 . . . . . . . . . . . . 13 e ≠ 0
3433a1i 11 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → e ≠ 0)
3516, 31, 34redivcld 12072 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (𝑛 / e) ∈ ℝ)
3635, 7reexpcld 14159 . . . . . . . . . 10 (𝑛 ∈ ℕ → ((𝑛 / e)↑𝑛) ∈ ℝ)
3729, 36remulcld 11274 . . . . . . . . 9 (𝑛 ∈ ℕ → ((√‘((2 · π) · 𝑛)) · ((𝑛 / e)↑𝑛)) ∈ ℝ)
381fvmpt2 7016 . . . . . . . . 9 ((𝑛 ∈ ℕ0 ∧ ((√‘((2 · π) · 𝑛)) · ((𝑛 / e)↑𝑛)) ∈ ℝ) → (𝑆𝑛) = ((√‘((2 · π) · 𝑛)) · ((𝑛 / e)↑𝑛)))
397, 37, 38syl2anc 583 . . . . . . . 8 (𝑛 ∈ ℕ → (𝑆𝑛) = ((√‘((2 · π) · 𝑛)) · ((𝑛 / e)↑𝑛)))
40 2rp 13011 . . . . . . . . . . . . 13 2 ∈ ℝ+
4140a1i 11 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 2 ∈ ℝ+)
42 pirp 26395 . . . . . . . . . . . . 13 π ∈ ℝ+
4342a1i 11 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → π ∈ ℝ+)
4441, 43rpmulcld 13064 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (2 · π) ∈ ℝ+)
45 nnrp 13017 . . . . . . . . . . 11 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+)
4644, 45rpmulcld 13064 . . . . . . . . . 10 (𝑛 ∈ ℕ → ((2 · π) · 𝑛) ∈ ℝ+)
4746rpsqrtcld 15390 . . . . . . . . 9 (𝑛 ∈ ℕ → (√‘((2 · π) · 𝑛)) ∈ ℝ+)
48 epr 16184 . . . . . . . . . . . 12 e ∈ ℝ+
4948a1i 11 . . . . . . . . . . 11 (𝑛 ∈ ℕ → e ∈ ℝ+)
5045, 49rpdivcld 13065 . . . . . . . . . 10 (𝑛 ∈ ℕ → (𝑛 / e) ∈ ℝ+)
51 nnz 12609 . . . . . . . . . 10 (𝑛 ∈ ℕ → 𝑛 ∈ ℤ)
5250, 51rpexpcld 14241 . . . . . . . . 9 (𝑛 ∈ ℕ → ((𝑛 / e)↑𝑛) ∈ ℝ+)
5347, 52rpmulcld 13064 . . . . . . . 8 (𝑛 ∈ ℕ → ((√‘((2 · π) · 𝑛)) · ((𝑛 / e)↑𝑛)) ∈ ℝ+)
5439, 53eqeltrd 2829 . . . . . . 7 (𝑛 ∈ ℕ → (𝑆𝑛) ∈ ℝ+)
5510, 54rerpdivcld 13079 . . . . . 6 (𝑛 ∈ ℕ → ((!‘𝑛) / (𝑆𝑛)) ∈ ℝ)
566, 55fmpti 7122 . . . . 5 (𝑛 ∈ ℕ ↦ ((!‘𝑛) / (𝑆𝑛))):ℕ⟶ℝ
5756a1i 11 . . . 4 (⊤ → (𝑛 ∈ ℕ ↦ ((!‘𝑛) / (𝑆𝑛))):ℕ⟶ℝ)
583, 4, 5, 57climreeq 45001 . . 3 (⊤ → ((𝑛 ∈ ℕ ↦ ((!‘𝑛) / (𝑆𝑛)))𝑅1 ↔ (𝑛 ∈ ℕ ↦ ((!‘𝑛) / (𝑆𝑛))) ⇝ 1))
5958mptru 1541 . 2 ((𝑛 ∈ ℕ ↦ ((!‘𝑛) / (𝑆𝑛)))𝑅1 ↔ (𝑛 ∈ ℕ ↦ ((!‘𝑛) / (𝑆𝑛))) ⇝ 1)
602, 59mpbir 230 1 (𝑛 ∈ ℕ ↦ ((!‘𝑛) / (𝑆𝑛)))𝑅1
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1534  wtru 1535  wcel 2099  wne 2937   class class class wbr 5148  cmpt 5231  ran crn 5679  wf 6544  cfv 6548  (class class class)co 7420  cr 11137  0cc0 11138  1c1 11139   · cmul 11143   < clt 11278  cle 11279   / cdiv 11901  cn 12242  2c2 12297  0cn0 12502  +crp 13006  (,)cioo 13356  cexp 14058  !cfa 14264  csqrt 15212  cli 15460  eceu 16038  πcpi 16042  topGenctg 17418  𝑡clm 23129
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-inf2 9664  ax-cc 10458  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215  ax-pre-sup 11216  ax-addf 11217
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-symdif 4243  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-iin 4999  df-disj 5114  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-isom 6557  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-of 7685  df-ofr 7686  df-om 7871  df-1st 7993  df-2nd 7994  df-supp 8166  df-frecs 8286  df-wrecs 8317  df-recs 8391  df-rdg 8430  df-1o 8486  df-2o 8487  df-oadd 8490  df-omul 8491  df-er 8724  df-map 8846  df-pm 8847  df-ixp 8916  df-en 8964  df-dom 8965  df-sdom 8966  df-fin 8967  df-fsupp 9386  df-fi 9434  df-sup 9465  df-inf 9466  df-oi 9533  df-dju 9924  df-card 9962  df-acn 9965  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-div 11902  df-nn 12243  df-2 12305  df-3 12306  df-4 12307  df-5 12308  df-6 12309  df-7 12310  df-8 12311  df-9 12312  df-n0 12503  df-xnn0 12575  df-z 12589  df-dec 12708  df-uz 12853  df-q 12963  df-rp 13007  df-xneg 13124  df-xadd 13125  df-xmul 13126  df-ioo 13360  df-ioc 13361  df-ico 13362  df-icc 13363  df-fz 13517  df-fzo 13660  df-fl 13789  df-mod 13867  df-seq 13999  df-exp 14059  df-fac 14265  df-bc 14294  df-hash 14322  df-shft 15046  df-cj 15078  df-re 15079  df-im 15080  df-sqrt 15214  df-abs 15215  df-limsup 15447  df-clim 15464  df-rlim 15465  df-sum 15665  df-ef 16043  df-e 16044  df-sin 16045  df-cos 16046  df-tan 16047  df-pi 16048  df-dvds 16231  df-struct 17115  df-sets 17132  df-slot 17150  df-ndx 17162  df-base 17180  df-ress 17209  df-plusg 17245  df-mulr 17246  df-starv 17247  df-sca 17248  df-vsca 17249  df-ip 17250  df-tset 17251  df-ple 17252  df-ds 17254  df-unif 17255  df-hom 17256  df-cco 17257  df-rest 17403  df-topn 17404  df-0g 17422  df-gsum 17423  df-topgen 17424  df-pt 17425  df-prds 17428  df-xrs 17483  df-qtop 17488  df-imas 17489  df-xps 17491  df-mre 17565  df-mrc 17566  df-acs 17568  df-mgm 18599  df-sgrp 18678  df-mnd 18694  df-submnd 18740  df-mulg 19023  df-cntz 19267  df-cmn 19736  df-psmet 21270  df-xmet 21271  df-met 21272  df-bl 21273  df-mopn 21274  df-fbas 21275  df-fg 21276  df-cnfld 21279  df-top 22795  df-topon 22812  df-topsp 22834  df-bases 22848  df-cld 22922  df-ntr 22923  df-cls 22924  df-nei 23001  df-lp 23039  df-perf 23040  df-cn 23130  df-cnp 23131  df-lm 23132  df-haus 23218  df-cmp 23290  df-tx 23465  df-hmeo 23658  df-fil 23749  df-fm 23841  df-flim 23842  df-flf 23843  df-xms 24225  df-ms 24226  df-tms 24227  df-cncf 24797  df-ovol 25392  df-vol 25393  df-mbf 25547  df-itg1 25548  df-itg2 25549  df-ibl 25550  df-itg 25551  df-0p 25598  df-limc 25794  df-dv 25795  df-ulm 26312  df-log 26489  df-cxp 26490
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator
OSZAR »