MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vmasum Structured version   Visualization version   GIF version

Theorem vmasum 27162
Description: The sum of the von Mangoldt function over the divisors of 𝑛. Equation 9.2.4 of [Shapiro], p. 328 and theorem 2.10 in [ApostolNT] p. 32. (Contributed by Mario Carneiro, 15-Apr-2016.)
Assertion
Ref Expression
vmasum (𝐴 ∈ ℕ → Σ𝑛 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐴} (Λ‘𝑛) = (log‘𝐴))
Distinct variable group:   𝑥,𝑛,𝐴

Proof of Theorem vmasum
Dummy variables 𝑘 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6897 . . 3 (𝑛 = (𝑝𝑘) → (Λ‘𝑛) = (Λ‘(𝑝𝑘)))
2 fzfid 13971 . . . 4 (𝐴 ∈ ℕ → (1...𝐴) ∈ Fin)
3 dvdsssfz1 16295 . . . 4 (𝐴 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥𝐴} ⊆ (1...𝐴))
42, 3ssfid 9292 . . 3 (𝐴 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥𝐴} ∈ Fin)
5 ssrab2 4075 . . . 4 {𝑥 ∈ ℕ ∣ 𝑥𝐴} ⊆ ℕ
65a1i 11 . . 3 (𝐴 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥𝐴} ⊆ ℕ)
7 inss1 4229 . . . 4 ((1...𝐴) ∩ ℙ) ⊆ (1...𝐴)
8 ssfi 9198 . . . 4 (((1...𝐴) ∈ Fin ∧ ((1...𝐴) ∩ ℙ) ⊆ (1...𝐴)) → ((1...𝐴) ∩ ℙ) ∈ Fin)
92, 7, 8sylancl 585 . . 3 (𝐴 ∈ ℕ → ((1...𝐴) ∩ ℙ) ∈ Fin)
10 pccl 16818 . . . . . . . . . 10 ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (𝑝 pCnt 𝐴) ∈ ℕ0)
1110ancoms 458 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐴) ∈ ℕ0)
1211nn0zd 12615 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐴) ∈ ℤ)
13 fznn 13602 . . . . . . . 8 ((𝑝 pCnt 𝐴) ∈ ℤ → (𝑘 ∈ (1...(𝑝 pCnt 𝐴)) ↔ (𝑘 ∈ ℕ ∧ 𝑘 ≤ (𝑝 pCnt 𝐴))))
1412, 13syl 17 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑘 ∈ (1...(𝑝 pCnt 𝐴)) ↔ (𝑘 ∈ ℕ ∧ 𝑘 ≤ (𝑝 pCnt 𝐴))))
1514anbi2d 629 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) → ((𝑝 ∈ (1...𝐴) ∧ 𝑘 ∈ (1...(𝑝 pCnt 𝐴))) ↔ (𝑝 ∈ (1...𝐴) ∧ (𝑘 ∈ ℕ ∧ 𝑘 ≤ (𝑝 pCnt 𝐴)))))
16 an12 644 . . . . . . 7 ((𝑝 ∈ (1...𝐴) ∧ (𝑘 ∈ ℕ ∧ 𝑘 ≤ (𝑝 pCnt 𝐴))) ↔ (𝑘 ∈ ℕ ∧ (𝑝 ∈ (1...𝐴) ∧ 𝑘 ≤ (𝑝 pCnt 𝐴))))
17 prmz 16646 . . . . . . . . . . . . . . 15 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
1817adantl 481 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℤ)
19 iddvdsexp 16257 . . . . . . . . . . . . . 14 ((𝑝 ∈ ℤ ∧ 𝑘 ∈ ℕ) → 𝑝 ∥ (𝑝𝑘))
2018, 19sylan 579 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → 𝑝 ∥ (𝑝𝑘))
2117ad2antlr 726 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → 𝑝 ∈ ℤ)
22 prmnn 16645 . . . . . . . . . . . . . . . . 17 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
2322adantl 481 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℕ)
24 nnnn0 12510 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
25 nnexpcl 14072 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑝𝑘) ∈ ℕ)
2623, 24, 25syl2an 595 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → (𝑝𝑘) ∈ ℕ)
2726nnzd 12616 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → (𝑝𝑘) ∈ ℤ)
28 nnz 12610 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℕ → 𝐴 ∈ ℤ)
2928ad2antrr 725 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ ℤ)
30 dvdstr 16271 . . . . . . . . . . . . . 14 ((𝑝 ∈ ℤ ∧ (𝑝𝑘) ∈ ℤ ∧ 𝐴 ∈ ℤ) → ((𝑝 ∥ (𝑝𝑘) ∧ (𝑝𝑘) ∥ 𝐴) → 𝑝𝐴))
3121, 27, 29, 30syl3anc 1369 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → ((𝑝 ∥ (𝑝𝑘) ∧ (𝑝𝑘) ∥ 𝐴) → 𝑝𝐴))
3220, 31mpand 694 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → ((𝑝𝑘) ∥ 𝐴𝑝𝐴))
33 simpll 766 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ ℕ)
34 dvdsle 16287 . . . . . . . . . . . . 13 ((𝑝 ∈ ℤ ∧ 𝐴 ∈ ℕ) → (𝑝𝐴𝑝𝐴))
3521, 33, 34syl2anc 583 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → (𝑝𝐴𝑝𝐴))
3632, 35syld 47 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → ((𝑝𝑘) ∥ 𝐴𝑝𝐴))
3722ad2antlr 726 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → 𝑝 ∈ ℕ)
38 fznn 13602 . . . . . . . . . . . . 13 (𝐴 ∈ ℤ → (𝑝 ∈ (1...𝐴) ↔ (𝑝 ∈ ℕ ∧ 𝑝𝐴)))
3938baibd 539 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ℕ) → (𝑝 ∈ (1...𝐴) ↔ 𝑝𝐴))
4029, 37, 39syl2anc 583 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → (𝑝 ∈ (1...𝐴) ↔ 𝑝𝐴))
4136, 40sylibrd 259 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → ((𝑝𝑘) ∥ 𝐴𝑝 ∈ (1...𝐴)))
4241pm4.71rd 562 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → ((𝑝𝑘) ∥ 𝐴 ↔ (𝑝 ∈ (1...𝐴) ∧ (𝑝𝑘) ∥ 𝐴)))
43 breq1 5151 . . . . . . . . . . 11 (𝑥 = (𝑝𝑘) → (𝑥𝐴 ↔ (𝑝𝑘) ∥ 𝐴))
4443elrab3 3683 . . . . . . . . . 10 ((𝑝𝑘) ∈ ℕ → ((𝑝𝑘) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐴} ↔ (𝑝𝑘) ∥ 𝐴))
4526, 44syl 17 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → ((𝑝𝑘) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐴} ↔ (𝑝𝑘) ∥ 𝐴))
46 simplr 768 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → 𝑝 ∈ ℙ)
4724adantl 481 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ0)
48 pcdvdsb 16838 . . . . . . . . . . 11 ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝑘 ∈ ℕ0) → (𝑘 ≤ (𝑝 pCnt 𝐴) ↔ (𝑝𝑘) ∥ 𝐴))
4946, 29, 47, 48syl3anc 1369 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → (𝑘 ≤ (𝑝 pCnt 𝐴) ↔ (𝑝𝑘) ∥ 𝐴))
5049anbi2d 629 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → ((𝑝 ∈ (1...𝐴) ∧ 𝑘 ≤ (𝑝 pCnt 𝐴)) ↔ (𝑝 ∈ (1...𝐴) ∧ (𝑝𝑘) ∥ 𝐴)))
5142, 45, 503bitr4rd 312 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → ((𝑝 ∈ (1...𝐴) ∧ 𝑘 ≤ (𝑝 pCnt 𝐴)) ↔ (𝑝𝑘) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐴}))
5251pm5.32da 578 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) → ((𝑘 ∈ ℕ ∧ (𝑝 ∈ (1...𝐴) ∧ 𝑘 ≤ (𝑝 pCnt 𝐴))) ↔ (𝑘 ∈ ℕ ∧ (𝑝𝑘) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐴})))
5316, 52bitrid 283 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) → ((𝑝 ∈ (1...𝐴) ∧ (𝑘 ∈ ℕ ∧ 𝑘 ≤ (𝑝 pCnt 𝐴))) ↔ (𝑘 ∈ ℕ ∧ (𝑝𝑘) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐴})))
5415, 53bitrd 279 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) → ((𝑝 ∈ (1...𝐴) ∧ 𝑘 ∈ (1...(𝑝 pCnt 𝐴))) ↔ (𝑘 ∈ ℕ ∧ (𝑝𝑘) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐴})))
5554pm5.32da 578 . . . 4 (𝐴 ∈ ℕ → ((𝑝 ∈ ℙ ∧ (𝑝 ∈ (1...𝐴) ∧ 𝑘 ∈ (1...(𝑝 pCnt 𝐴)))) ↔ (𝑝 ∈ ℙ ∧ (𝑘 ∈ ℕ ∧ (𝑝𝑘) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐴}))))
56 elin 3963 . . . . . 6 (𝑝 ∈ ((1...𝐴) ∩ ℙ) ↔ (𝑝 ∈ (1...𝐴) ∧ 𝑝 ∈ ℙ))
5756anbi1i 623 . . . . 5 ((𝑝 ∈ ((1...𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(𝑝 pCnt 𝐴))) ↔ ((𝑝 ∈ (1...𝐴) ∧ 𝑝 ∈ ℙ) ∧ 𝑘 ∈ (1...(𝑝 pCnt 𝐴))))
58 anass 468 . . . . 5 (((𝑝 ∈ (1...𝐴) ∧ 𝑝 ∈ ℙ) ∧ 𝑘 ∈ (1...(𝑝 pCnt 𝐴))) ↔ (𝑝 ∈ (1...𝐴) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(𝑝 pCnt 𝐴)))))
59 an12 644 . . . . 5 ((𝑝 ∈ (1...𝐴) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(𝑝 pCnt 𝐴)))) ↔ (𝑝 ∈ ℙ ∧ (𝑝 ∈ (1...𝐴) ∧ 𝑘 ∈ (1...(𝑝 pCnt 𝐴)))))
6057, 58, 593bitri 297 . . . 4 ((𝑝 ∈ ((1...𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(𝑝 pCnt 𝐴))) ↔ (𝑝 ∈ ℙ ∧ (𝑝 ∈ (1...𝐴) ∧ 𝑘 ∈ (1...(𝑝 pCnt 𝐴)))))
61 anass 468 . . . 4 (((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ (𝑝𝑘) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐴}) ↔ (𝑝 ∈ ℙ ∧ (𝑘 ∈ ℕ ∧ (𝑝𝑘) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐴})))
6255, 60, 613bitr4g 314 . . 3 (𝐴 ∈ ℕ → ((𝑝 ∈ ((1...𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(𝑝 pCnt 𝐴))) ↔ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ (𝑝𝑘) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐴})))
636sselda 3980 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐴}) → 𝑛 ∈ ℕ)
64 vmacl 27063 . . . . 5 (𝑛 ∈ ℕ → (Λ‘𝑛) ∈ ℝ)
6563, 64syl 17 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐴}) → (Λ‘𝑛) ∈ ℝ)
6665recnd 11273 . . 3 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐴}) → (Λ‘𝑛) ∈ ℂ)
67 simprr 772 . . 3 ((𝐴 ∈ ℕ ∧ (𝑛 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐴} ∧ (Λ‘𝑛) = 0)) → (Λ‘𝑛) = 0)
681, 4, 6, 9, 62, 66, 67fsumvma 27159 . 2 (𝐴 ∈ ℕ → Σ𝑛 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐴} (Λ‘𝑛) = Σ𝑝 ∈ ((1...𝐴) ∩ ℙ)Σ𝑘 ∈ (1...(𝑝 pCnt 𝐴))(Λ‘(𝑝𝑘)))
69 elinel2 4196 . . . . . . 7 (𝑝 ∈ ((1...𝐴) ∩ ℙ) → 𝑝 ∈ ℙ)
7069ad2antlr 726 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) ∧ 𝑘 ∈ (1...(𝑝 pCnt 𝐴))) → 𝑝 ∈ ℙ)
71 elfznn 13563 . . . . . . 7 (𝑘 ∈ (1...(𝑝 pCnt 𝐴)) → 𝑘 ∈ ℕ)
7271adantl 481 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) ∧ 𝑘 ∈ (1...(𝑝 pCnt 𝐴))) → 𝑘 ∈ ℕ)
73 vmappw 27061 . . . . . 6 ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) → (Λ‘(𝑝𝑘)) = (log‘𝑝))
7470, 72, 73syl2anc 583 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) ∧ 𝑘 ∈ (1...(𝑝 pCnt 𝐴))) → (Λ‘(𝑝𝑘)) = (log‘𝑝))
7574sumeq2dv 15682 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) → Σ𝑘 ∈ (1...(𝑝 pCnt 𝐴))(Λ‘(𝑝𝑘)) = Σ𝑘 ∈ (1...(𝑝 pCnt 𝐴))(log‘𝑝))
76 fzfid 13971 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) → (1...(𝑝 pCnt 𝐴)) ∈ Fin)
7769, 22syl 17 . . . . . . . . 9 (𝑝 ∈ ((1...𝐴) ∩ ℙ) → 𝑝 ∈ ℕ)
7877adantl 481 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) → 𝑝 ∈ ℕ)
7978nnrpd 13047 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) → 𝑝 ∈ ℝ+)
8079relogcld 26570 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) → (log‘𝑝) ∈ ℝ)
8180recnd 11273 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) → (log‘𝑝) ∈ ℂ)
82 fsumconst 15769 . . . . 5 (((1...(𝑝 pCnt 𝐴)) ∈ Fin ∧ (log‘𝑝) ∈ ℂ) → Σ𝑘 ∈ (1...(𝑝 pCnt 𝐴))(log‘𝑝) = ((♯‘(1...(𝑝 pCnt 𝐴))) · (log‘𝑝)))
8376, 81, 82syl2anc 583 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) → Σ𝑘 ∈ (1...(𝑝 pCnt 𝐴))(log‘𝑝) = ((♯‘(1...(𝑝 pCnt 𝐴))) · (log‘𝑝)))
8469, 11sylan2 592 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) → (𝑝 pCnt 𝐴) ∈ ℕ0)
85 hashfz1 14338 . . . . . 6 ((𝑝 pCnt 𝐴) ∈ ℕ0 → (♯‘(1...(𝑝 pCnt 𝐴))) = (𝑝 pCnt 𝐴))
8684, 85syl 17 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) → (♯‘(1...(𝑝 pCnt 𝐴))) = (𝑝 pCnt 𝐴))
8786oveq1d 7435 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) → ((♯‘(1...(𝑝 pCnt 𝐴))) · (log‘𝑝)) = ((𝑝 pCnt 𝐴) · (log‘𝑝)))
8875, 83, 873eqtrd 2772 . . 3 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) → Σ𝑘 ∈ (1...(𝑝 pCnt 𝐴))(Λ‘(𝑝𝑘)) = ((𝑝 pCnt 𝐴) · (log‘𝑝)))
8988sumeq2dv 15682 . 2 (𝐴 ∈ ℕ → Σ𝑝 ∈ ((1...𝐴) ∩ ℙ)Σ𝑘 ∈ (1...(𝑝 pCnt 𝐴))(Λ‘(𝑝𝑘)) = Σ𝑝 ∈ ((1...𝐴) ∩ ℙ)((𝑝 pCnt 𝐴) · (log‘𝑝)))
90 pclogsum 27161 . 2 (𝐴 ∈ ℕ → Σ𝑝 ∈ ((1...𝐴) ∩ ℙ)((𝑝 pCnt 𝐴) · (log‘𝑝)) = (log‘𝐴))
9168, 89, 903eqtrd 2772 1 (𝐴 ∈ ℕ → Σ𝑛 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐴} (Λ‘𝑛) = (log‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1534  wcel 2099  {crab 3429  cin 3946  wss 3947   class class class wbr 5148  cfv 6548  (class class class)co 7420  Fincfn 8964  cc 11137  cr 11138  0cc0 11139  1c1 11140   · cmul 11144  cle 11280  cn 12243  0cn0 12503  cz 12589  ...cfz 13517  cexp 14059  chash 14322  Σcsu 15665  cdvds 16231  cprime 16642   pCnt cpc 16805  logclog 26501  Λcvma 27037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-inf2 9665  ax-cnex 11195  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216  ax-pre-sup 11217  ax-addf 11218
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-isom 6557  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-of 7685  df-om 7871  df-1st 7993  df-2nd 7994  df-supp 8166  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-oadd 8491  df-er 8725  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9387  df-fi 9435  df-sup 9466  df-inf 9467  df-oi 9534  df-dju 9925  df-card 9963  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-div 11903  df-nn 12244  df-2 12306  df-3 12307  df-4 12308  df-5 12309  df-6 12310  df-7 12311  df-8 12312  df-9 12313  df-n0 12504  df-z 12590  df-dec 12709  df-uz 12854  df-q 12964  df-rp 13008  df-xneg 13125  df-xadd 13126  df-xmul 13127  df-ioo 13361  df-ioc 13362  df-ico 13363  df-icc 13364  df-fz 13518  df-fzo 13661  df-fl 13790  df-mod 13868  df-seq 14000  df-exp 14060  df-fac 14266  df-bc 14295  df-hash 14323  df-shft 15047  df-cj 15079  df-re 15080  df-im 15081  df-sqrt 15215  df-abs 15216  df-limsup 15448  df-clim 15465  df-rlim 15466  df-sum 15666  df-ef 16044  df-sin 16046  df-cos 16047  df-pi 16049  df-dvds 16232  df-gcd 16470  df-prm 16643  df-pc 16806  df-struct 17116  df-sets 17133  df-slot 17151  df-ndx 17163  df-base 17181  df-ress 17210  df-plusg 17246  df-mulr 17247  df-starv 17248  df-sca 17249  df-vsca 17250  df-ip 17251  df-tset 17252  df-ple 17253  df-ds 17255  df-unif 17256  df-hom 17257  df-cco 17258  df-rest 17404  df-topn 17405  df-0g 17423  df-gsum 17424  df-topgen 17425  df-pt 17426  df-prds 17429  df-xrs 17484  df-qtop 17489  df-imas 17490  df-xps 17492  df-mre 17566  df-mrc 17567  df-acs 17569  df-mgm 18600  df-sgrp 18679  df-mnd 18695  df-submnd 18741  df-mulg 19024  df-cntz 19268  df-cmn 19737  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274  df-mopn 21275  df-fbas 21276  df-fg 21277  df-cnfld 21280  df-top 22809  df-topon 22826  df-topsp 22848  df-bases 22862  df-cld 22936  df-ntr 22937  df-cls 22938  df-nei 23015  df-lp 23053  df-perf 23054  df-cn 23144  df-cnp 23145  df-haus 23232  df-tx 23479  df-hmeo 23672  df-fil 23763  df-fm 23855  df-flim 23856  df-flf 23857  df-xms 24239  df-ms 24240  df-tms 24241  df-cncf 24811  df-limc 25808  df-dv 25809  df-log 26503  df-vma 27043
This theorem is referenced by:  logfac2  27163  dchrvmasumlem1  27441  vmalogdivsum2  27484  logsqvma  27488
  Copyright terms: Public domain W3C validator
OSZAR »