![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fltne | Structured version Visualization version GIF version |
Description: If a counterexample to FLT exists, its addends are not equal. (Contributed by SN, 1-Jun-2023.) |
Ref | Expression |
---|---|
fltne.a | ⊢ (𝜑 → 𝐴 ∈ ℕ) |
fltne.b | ⊢ (𝜑 → 𝐵 ∈ ℕ) |
fltne.c | ⊢ (𝜑 → 𝐶 ∈ ℕ) |
fltne.n | ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘2)) |
fltne.1 | ⊢ (𝜑 → ((𝐴↑𝑁) + (𝐵↑𝑁)) = (𝐶↑𝑁)) |
Ref | Expression |
---|---|
fltne | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2prm 16656 | . . . . 5 ⊢ 2 ∈ ℙ | |
2 | fltne.n | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘2)) | |
3 | rtprmirr 41900 | . . . . 5 ⊢ ((2 ∈ ℙ ∧ 𝑁 ∈ (ℤ≥‘2)) → (2↑𝑐(1 / 𝑁)) ∈ (ℝ ∖ ℚ)) | |
4 | 1, 2, 3 | sylancr 586 | . . . 4 ⊢ (𝜑 → (2↑𝑐(1 / 𝑁)) ∈ (ℝ ∖ ℚ)) |
5 | 4 | eldifbd 3958 | . . 3 ⊢ (𝜑 → ¬ (2↑𝑐(1 / 𝑁)) ∈ ℚ) |
6 | fltne.c | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ ℕ) | |
7 | 6 | nnzd 12609 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ ℤ) |
8 | fltne.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℕ) | |
9 | znq 12960 | . . . . . 6 ⊢ ((𝐶 ∈ ℤ ∧ 𝐴 ∈ ℕ) → (𝐶 / 𝐴) ∈ ℚ) | |
10 | 7, 8, 9 | syl2anc 583 | . . . . 5 ⊢ (𝜑 → (𝐶 / 𝐴) ∈ ℚ) |
11 | eleq1a 2824 | . . . . 5 ⊢ ((𝐶 / 𝐴) ∈ ℚ → ((2↑𝑐(1 / 𝑁)) = (𝐶 / 𝐴) → (2↑𝑐(1 / 𝑁)) ∈ ℚ)) | |
12 | 10, 11 | syl 17 | . . . 4 ⊢ (𝜑 → ((2↑𝑐(1 / 𝑁)) = (𝐶 / 𝐴) → (2↑𝑐(1 / 𝑁)) ∈ ℚ)) |
13 | 12 | necon3bd 2950 | . . 3 ⊢ (𝜑 → (¬ (2↑𝑐(1 / 𝑁)) ∈ ℚ → (2↑𝑐(1 / 𝑁)) ≠ (𝐶 / 𝐴))) |
14 | 5, 13 | mpd 15 | . 2 ⊢ (𝜑 → (2↑𝑐(1 / 𝑁)) ≠ (𝐶 / 𝐴)) |
15 | 2rp 13005 | . . . . . 6 ⊢ 2 ∈ ℝ+ | |
16 | 15 | a1i 11 | . . . . 5 ⊢ (𝜑 → 2 ∈ ℝ+) |
17 | eluz2nn 12892 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑁 ∈ ℕ) | |
18 | 2, 17 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℕ) |
19 | 18 | nnrecred 12287 | . . . . 5 ⊢ (𝜑 → (1 / 𝑁) ∈ ℝ) |
20 | 16, 19 | rpcxpcld 26660 | . . . 4 ⊢ (𝜑 → (2↑𝑐(1 / 𝑁)) ∈ ℝ+) |
21 | 20 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → (2↑𝑐(1 / 𝑁)) ∈ ℝ+) |
22 | 6 | nnrpd 13040 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℝ+) |
23 | 8 | nnrpd 13040 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
24 | 22, 23 | rpdivcld 13059 | . . . 4 ⊢ (𝜑 → (𝐶 / 𝐴) ∈ ℝ+) |
25 | 24 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → (𝐶 / 𝐴) ∈ ℝ+) |
26 | 18 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝑁 ∈ ℕ) |
27 | 18 | nnnn0d 12556 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
28 | 8, 27 | nnexpcld 14233 | . . . . . . 7 ⊢ (𝜑 → (𝐴↑𝑁) ∈ ℕ) |
29 | 28 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → (𝐴↑𝑁) ∈ ℕ) |
30 | 29 | nncnd 12252 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → (𝐴↑𝑁) ∈ ℂ) |
31 | 2cnd 12314 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 2 ∈ ℂ) | |
32 | 29 | nnne0d 12286 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → (𝐴↑𝑁) ≠ 0) |
33 | 28 | nncnd 12252 | . . . . . . . 8 ⊢ (𝜑 → (𝐴↑𝑁) ∈ ℂ) |
34 | 33 | times2d 12480 | . . . . . . 7 ⊢ (𝜑 → ((𝐴↑𝑁) · 2) = ((𝐴↑𝑁) + (𝐴↑𝑁))) |
35 | 34 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → ((𝐴↑𝑁) · 2) = ((𝐴↑𝑁) + (𝐴↑𝑁))) |
36 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝐴 = 𝐵) | |
37 | 36 | oveq1d 7429 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → (𝐴↑𝑁) = (𝐵↑𝑁)) |
38 | 37 | oveq2d 7430 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → ((𝐴↑𝑁) + (𝐴↑𝑁)) = ((𝐴↑𝑁) + (𝐵↑𝑁))) |
39 | fltne.1 | . . . . . . 7 ⊢ (𝜑 → ((𝐴↑𝑁) + (𝐵↑𝑁)) = (𝐶↑𝑁)) | |
40 | 39 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → ((𝐴↑𝑁) + (𝐵↑𝑁)) = (𝐶↑𝑁)) |
41 | 35, 38, 40 | 3eqtrd 2772 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → ((𝐴↑𝑁) · 2) = (𝐶↑𝑁)) |
42 | 30, 31, 32, 41 | mvllmuld 12070 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 2 = ((𝐶↑𝑁) / (𝐴↑𝑁))) |
43 | 2cn 12311 | . . . . . 6 ⊢ 2 ∈ ℂ | |
44 | cxproot 26617 | . . . . . 6 ⊢ ((2 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((2↑𝑐(1 / 𝑁))↑𝑁) = 2) | |
45 | 43, 18, 44 | sylancr 586 | . . . . 5 ⊢ (𝜑 → ((2↑𝑐(1 / 𝑁))↑𝑁) = 2) |
46 | 45 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → ((2↑𝑐(1 / 𝑁))↑𝑁) = 2) |
47 | 6 | nncnd 12252 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ ℂ) |
48 | 8 | nncnd 12252 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
49 | 8 | nnne0d 12286 | . . . . . 6 ⊢ (𝜑 → 𝐴 ≠ 0) |
50 | 47, 48, 49, 27 | expdivd 14150 | . . . . 5 ⊢ (𝜑 → ((𝐶 / 𝐴)↑𝑁) = ((𝐶↑𝑁) / (𝐴↑𝑁))) |
51 | 50 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → ((𝐶 / 𝐴)↑𝑁) = ((𝐶↑𝑁) / (𝐴↑𝑁))) |
52 | 42, 46, 51 | 3eqtr4d 2778 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → ((2↑𝑐(1 / 𝑁))↑𝑁) = ((𝐶 / 𝐴)↑𝑁)) |
53 | 21, 25, 26, 52 | exp11nnd 41878 | . 2 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → (2↑𝑐(1 / 𝑁)) = (𝐶 / 𝐴)) |
54 | 14, 53 | mteqand 3029 | 1 ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ≠ wne 2936 ∖ cdif 3942 ‘cfv 6542 (class class class)co 7414 ℂcc 11130 ℝcr 11131 1c1 11133 + caddc 11135 · cmul 11137 / cdiv 11895 ℕcn 12236 2c2 12291 ℤcz 12582 ℤ≥cuz 12846 ℚcq 12956 ℝ+crp 13000 ↑cexp 14052 ℙcprime 16635 ↑𝑐ccxp 26482 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-inf2 9658 ax-cnex 11188 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 ax-pre-sup 11210 ax-addf 11211 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-iin 4994 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-of 7679 df-om 7865 df-1st 7987 df-2nd 7988 df-supp 8160 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8718 df-map 8840 df-pm 8841 df-ixp 8910 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-fsupp 9380 df-fi 9428 df-sup 9459 df-inf 9460 df-oi 9527 df-card 9956 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-div 11896 df-nn 12237 df-2 12299 df-3 12300 df-4 12301 df-5 12302 df-6 12303 df-7 12304 df-8 12305 df-9 12306 df-n0 12497 df-z 12583 df-dec 12702 df-uz 12847 df-q 12957 df-rp 13001 df-xneg 13118 df-xadd 13119 df-xmul 13120 df-ioo 13354 df-ioc 13355 df-ico 13356 df-icc 13357 df-fz 13511 df-fzo 13654 df-fl 13783 df-mod 13861 df-seq 13993 df-exp 14053 df-fac 14259 df-bc 14288 df-hash 14316 df-shft 15040 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-limsup 15441 df-clim 15458 df-rlim 15459 df-sum 15659 df-ef 16037 df-sin 16039 df-cos 16040 df-pi 16042 df-dvds 16225 df-gcd 16463 df-prm 16636 df-numer 16700 df-denom 16701 df-struct 17109 df-sets 17126 df-slot 17144 df-ndx 17156 df-base 17174 df-ress 17203 df-plusg 17239 df-mulr 17240 df-starv 17241 df-sca 17242 df-vsca 17243 df-ip 17244 df-tset 17245 df-ple 17246 df-ds 17248 df-unif 17249 df-hom 17250 df-cco 17251 df-rest 17397 df-topn 17398 df-0g 17416 df-gsum 17417 df-topgen 17418 df-pt 17419 df-prds 17422 df-xrs 17477 df-qtop 17482 df-imas 17483 df-xps 17485 df-mre 17559 df-mrc 17560 df-acs 17562 df-mgm 18593 df-sgrp 18672 df-mnd 18688 df-submnd 18734 df-mulg 19017 df-cntz 19261 df-cmn 19730 df-psmet 21264 df-xmet 21265 df-met 21266 df-bl 21267 df-mopn 21268 df-fbas 21269 df-fg 21270 df-cnfld 21273 df-top 22789 df-topon 22806 df-topsp 22828 df-bases 22842 df-cld 22916 df-ntr 22917 df-cls 22918 df-nei 22995 df-lp 23033 df-perf 23034 df-cn 23124 df-cnp 23125 df-haus 23212 df-tx 23459 df-hmeo 23652 df-fil 23743 df-fm 23835 df-flim 23836 df-flf 23837 df-xms 24219 df-ms 24220 df-tms 24221 df-cncf 24791 df-limc 25788 df-dv 25789 df-log 26483 df-cxp 26484 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |