Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rtprmirr Structured version   Visualization version   GIF version

Theorem rtprmirr 41906
Description: The root of a prime number is irrational. (Contributed by Steven Nguyen, 6-Apr-2023.)
Assertion
Ref Expression
rtprmirr ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → (𝑃𝑐(1 / 𝑁)) ∈ (ℝ ∖ ℚ))

Proof of Theorem rtprmirr
StepHypRef Expression
1 prmnn 16645 . . . . 5 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
21adantr 480 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → 𝑃 ∈ ℕ)
32nnred 12258 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → 𝑃 ∈ ℝ)
4 0red 11248 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → 0 ∈ ℝ)
52nngt0d 12292 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → 0 < 𝑃)
64, 3, 5ltled 11393 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → 0 ≤ 𝑃)
7 eluzelre 12864 . . . . 5 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℝ)
87adantl 481 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → 𝑁 ∈ ℝ)
9 eluz2n0 12903 . . . . 5 (𝑁 ∈ (ℤ‘2) → 𝑁 ≠ 0)
109adantl 481 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → 𝑁 ≠ 0)
118, 10rereccld 12072 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → (1 / 𝑁) ∈ ℝ)
123, 6, 11recxpcld 26670 . 2 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → (𝑃𝑐(1 / 𝑁)) ∈ ℝ)
13 eluz2gt1 12935 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘2) → 1 < 𝑁)
14 recgt1i 12142 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℝ ∧ 1 < 𝑁) → (0 < (1 / 𝑁) ∧ (1 / 𝑁) < 1))
157, 13, 14syl2anc 583 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘2) → (0 < (1 / 𝑁) ∧ (1 / 𝑁) < 1))
1615simprd 495 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ‘2) → (1 / 𝑁) < 1)
1716adantl 481 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → (1 / 𝑁) < 1)
181nnred 12258 . . . . . . . . . . . . . 14 (𝑃 ∈ ℙ → 𝑃 ∈ ℝ)
1918adantr 480 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → 𝑃 ∈ ℝ)
20 prmgt1 16668 . . . . . . . . . . . . . 14 (𝑃 ∈ ℙ → 1 < 𝑃)
2120adantr 480 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → 1 < 𝑃)
22 1red 11246 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → 1 ∈ ℝ)
2319, 21, 11, 22cxpltd 26666 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → ((1 / 𝑁) < 1 ↔ (𝑃𝑐(1 / 𝑁)) < (𝑃𝑐1)))
2417, 23mpbid 231 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → (𝑃𝑐(1 / 𝑁)) < (𝑃𝑐1))
252nncnd 12259 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → 𝑃 ∈ ℂ)
2625cxp1d 26653 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → (𝑃𝑐1) = 𝑃)
2724, 26breqtrd 5174 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → (𝑃𝑐(1 / 𝑁)) < 𝑃)
2812, 27ltned 11381 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → (𝑃𝑐(1 / 𝑁)) ≠ 𝑃)
2928neneqd 2942 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → ¬ (𝑃𝑐(1 / 𝑁)) = 𝑃)
3029adantr 480 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝑃𝑐(1 / 𝑁)) ∈ ℕ) → ¬ (𝑃𝑐(1 / 𝑁)) = 𝑃)
3125cxp0d 26652 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → (𝑃𝑐0) = 1)
3215simpld 494 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ‘2) → 0 < (1 / 𝑁))
3332adantl 481 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → 0 < (1 / 𝑁))
3419, 21, 4, 11cxpltd 26666 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → (0 < (1 / 𝑁) ↔ (𝑃𝑐0) < (𝑃𝑐(1 / 𝑁))))
3533, 34mpbid 231 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → (𝑃𝑐0) < (𝑃𝑐(1 / 𝑁)))
3631, 35eqbrtrrd 5172 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → 1 < (𝑃𝑐(1 / 𝑁)))
3722, 36gtned 11380 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → (𝑃𝑐(1 / 𝑁)) ≠ 1)
3837neneqd 2942 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → ¬ (𝑃𝑐(1 / 𝑁)) = 1)
3938adantr 480 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝑃𝑐(1 / 𝑁)) ∈ ℕ) → ¬ (𝑃𝑐(1 / 𝑁)) = 1)
40 dvdsprime 16658 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ (𝑃𝑐(1 / 𝑁)) ∈ ℕ) → ((𝑃𝑐(1 / 𝑁)) ∥ 𝑃 ↔ ((𝑃𝑐(1 / 𝑁)) = 𝑃 ∨ (𝑃𝑐(1 / 𝑁)) = 1)))
4140adantlr 714 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝑃𝑐(1 / 𝑁)) ∈ ℕ) → ((𝑃𝑐(1 / 𝑁)) ∥ 𝑃 ↔ ((𝑃𝑐(1 / 𝑁)) = 𝑃 ∨ (𝑃𝑐(1 / 𝑁)) = 1)))
4241biimpd 228 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝑃𝑐(1 / 𝑁)) ∈ ℕ) → ((𝑃𝑐(1 / 𝑁)) ∥ 𝑃 → ((𝑃𝑐(1 / 𝑁)) = 𝑃 ∨ (𝑃𝑐(1 / 𝑁)) = 1)))
4330, 39, 42mtord 878 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝑃𝑐(1 / 𝑁)) ∈ ℕ) → ¬ (𝑃𝑐(1 / 𝑁)) ∥ 𝑃)
44 nan 829 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → ¬ ((𝑃𝑐(1 / 𝑁)) ∈ ℕ ∧ (𝑃𝑐(1 / 𝑁)) ∥ 𝑃)) ↔ (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝑃𝑐(1 / 𝑁)) ∈ ℕ) → ¬ (𝑃𝑐(1 / 𝑁)) ∥ 𝑃))
4543, 44mpbir 230 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → ¬ ((𝑃𝑐(1 / 𝑁)) ∈ ℕ ∧ (𝑃𝑐(1 / 𝑁)) ∥ 𝑃))
46 prmz 16646 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
47 eluz2nn 12899 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ)
48 zrtdvds 41905 . . . . . . . 8 ((𝑃 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑃𝑐(1 / 𝑁)) ∈ ℕ) → (𝑃𝑐(1 / 𝑁)) ∥ 𝑃)
4946, 47, 48syl3an12 41697 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2) ∧ (𝑃𝑐(1 / 𝑁)) ∈ ℕ) → (𝑃𝑐(1 / 𝑁)) ∥ 𝑃)
50493expia 1119 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → ((𝑃𝑐(1 / 𝑁)) ∈ ℕ → (𝑃𝑐(1 / 𝑁)) ∥ 𝑃))
5150ancld 550 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → ((𝑃𝑐(1 / 𝑁)) ∈ ℕ → ((𝑃𝑐(1 / 𝑁)) ∈ ℕ ∧ (𝑃𝑐(1 / 𝑁)) ∥ 𝑃)))
5245, 51mtod 197 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → ¬ (𝑃𝑐(1 / 𝑁)) ∈ ℕ)
531nnrpd 13047 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ ℝ+)
54533ad2ant1 1131 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2) ∧ (𝑃𝑐(1 / 𝑁)) ∈ ℤ) → 𝑃 ∈ ℝ+)
5573ad2ant2 1132 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2) ∧ (𝑃𝑐(1 / 𝑁)) ∈ ℤ) → 𝑁 ∈ ℝ)
5693ad2ant2 1132 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2) ∧ (𝑃𝑐(1 / 𝑁)) ∈ ℤ) → 𝑁 ≠ 0)
5755, 56rereccld 12072 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2) ∧ (𝑃𝑐(1 / 𝑁)) ∈ ℤ) → (1 / 𝑁) ∈ ℝ)
5854, 57cxpgt0d 26685 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2) ∧ (𝑃𝑐(1 / 𝑁)) ∈ ℤ) → 0 < (𝑃𝑐(1 / 𝑁)))
59583expia 1119 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → ((𝑃𝑐(1 / 𝑁)) ∈ ℤ → 0 < (𝑃𝑐(1 / 𝑁))))
6059ancld 550 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → ((𝑃𝑐(1 / 𝑁)) ∈ ℤ → ((𝑃𝑐(1 / 𝑁)) ∈ ℤ ∧ 0 < (𝑃𝑐(1 / 𝑁)))))
61 elnnz 12599 . . . . 5 ((𝑃𝑐(1 / 𝑁)) ∈ ℕ ↔ ((𝑃𝑐(1 / 𝑁)) ∈ ℤ ∧ 0 < (𝑃𝑐(1 / 𝑁))))
6260, 61imbitrrdi 251 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → ((𝑃𝑐(1 / 𝑁)) ∈ ℤ → (𝑃𝑐(1 / 𝑁)) ∈ ℕ))
6352, 62mtod 197 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → ¬ (𝑃𝑐(1 / 𝑁)) ∈ ℤ)
64 zrtelqelz 41904 . . . . 5 ((𝑃 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑃𝑐(1 / 𝑁)) ∈ ℚ) → (𝑃𝑐(1 / 𝑁)) ∈ ℤ)
6546, 47, 64syl3an12 41697 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2) ∧ (𝑃𝑐(1 / 𝑁)) ∈ ℚ) → (𝑃𝑐(1 / 𝑁)) ∈ ℤ)
66653expia 1119 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → ((𝑃𝑐(1 / 𝑁)) ∈ ℚ → (𝑃𝑐(1 / 𝑁)) ∈ ℤ))
6763, 66mtod 197 . 2 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → ¬ (𝑃𝑐(1 / 𝑁)) ∈ ℚ)
6812, 67eldifd 3958 1 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → (𝑃𝑐(1 / 𝑁)) ∈ (ℝ ∖ ℚ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 846  w3a 1085   = wceq 1534  wcel 2099  wne 2937  cdif 3944   class class class wbr 5148  cfv 6548  (class class class)co 7420  cr 11138  0cc0 11139  1c1 11140   < clt 11279   / cdiv 11902  cn 12243  2c2 12298  cz 12589  cuz 12853  cq 12963  +crp 13007  cdvds 16231  cprime 16642  𝑐ccxp 26502
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-inf2 9665  ax-cnex 11195  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216  ax-pre-sup 11217  ax-addf 11218
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-isom 6557  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-of 7685  df-om 7871  df-1st 7993  df-2nd 7994  df-supp 8166  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-er 8725  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9387  df-fi 9435  df-sup 9466  df-inf 9467  df-oi 9534  df-card 9963  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-div 11903  df-nn 12244  df-2 12306  df-3 12307  df-4 12308  df-5 12309  df-6 12310  df-7 12311  df-8 12312  df-9 12313  df-n0 12504  df-z 12590  df-dec 12709  df-uz 12854  df-q 12964  df-rp 13008  df-xneg 13125  df-xadd 13126  df-xmul 13127  df-ioo 13361  df-ioc 13362  df-ico 13363  df-icc 13364  df-fz 13518  df-fzo 13661  df-fl 13790  df-mod 13868  df-seq 14000  df-exp 14060  df-fac 14266  df-bc 14295  df-hash 14323  df-shft 15047  df-cj 15079  df-re 15080  df-im 15081  df-sqrt 15215  df-abs 15216  df-limsup 15448  df-clim 15465  df-rlim 15466  df-sum 15666  df-ef 16044  df-sin 16046  df-cos 16047  df-pi 16049  df-dvds 16232  df-gcd 16470  df-prm 16643  df-numer 16707  df-denom 16708  df-struct 17116  df-sets 17133  df-slot 17151  df-ndx 17163  df-base 17181  df-ress 17210  df-plusg 17246  df-mulr 17247  df-starv 17248  df-sca 17249  df-vsca 17250  df-ip 17251  df-tset 17252  df-ple 17253  df-ds 17255  df-unif 17256  df-hom 17257  df-cco 17258  df-rest 17404  df-topn 17405  df-0g 17423  df-gsum 17424  df-topgen 17425  df-pt 17426  df-prds 17429  df-xrs 17484  df-qtop 17489  df-imas 17490  df-xps 17492  df-mre 17566  df-mrc 17567  df-acs 17569  df-mgm 18600  df-sgrp 18679  df-mnd 18695  df-submnd 18741  df-mulg 19024  df-cntz 19268  df-cmn 19737  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274  df-mopn 21275  df-fbas 21276  df-fg 21277  df-cnfld 21280  df-top 22809  df-topon 22826  df-topsp 22848  df-bases 22862  df-cld 22936  df-ntr 22937  df-cls 22938  df-nei 23015  df-lp 23053  df-perf 23054  df-cn 23144  df-cnp 23145  df-haus 23232  df-tx 23479  df-hmeo 23672  df-fil 23763  df-fm 23855  df-flim 23856  df-flf 23857  df-xms 24239  df-ms 24240  df-tms 24241  df-cncf 24811  df-limc 25808  df-dv 25809  df-log 26503  df-cxp 26504
This theorem is referenced by:  fltne  42068
  Copyright terms: Public domain W3C validator
OSZAR »