Proof of Theorem rtprmirr
Step | Hyp | Ref
| Expression |
1 | | prmnn 16645 |
. . . . 5
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℕ) |
2 | 1 | adantr 480 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2)) → 𝑃 ∈ ℕ) |
3 | 2 | nnred 12258 |
. . 3
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2)) → 𝑃 ∈ ℝ) |
4 | | 0red 11248 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2)) → 0 ∈ ℝ) |
5 | 2 | nngt0d 12292 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2)) → 0 < 𝑃) |
6 | 4, 3, 5 | ltled 11393 |
. . 3
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2)) → 0 ≤ 𝑃) |
7 | | eluzelre 12864 |
. . . . 5
⊢ (𝑁 ∈
(ℤ≥‘2) → 𝑁 ∈ ℝ) |
8 | 7 | adantl 481 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2)) → 𝑁 ∈ ℝ) |
9 | | eluz2n0 12903 |
. . . . 5
⊢ (𝑁 ∈
(ℤ≥‘2) → 𝑁 ≠ 0) |
10 | 9 | adantl 481 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2)) → 𝑁 ≠ 0) |
11 | 8, 10 | rereccld 12072 |
. . 3
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2)) → (1 / 𝑁) ∈ ℝ) |
12 | 3, 6, 11 | recxpcld 26670 |
. 2
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2)) → (𝑃↑𝑐(1 / 𝑁)) ∈
ℝ) |
13 | | eluz2gt1 12935 |
. . . . . . . . . . . . . . 15
⊢ (𝑁 ∈
(ℤ≥‘2) → 1 < 𝑁) |
14 | | recgt1i 12142 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℝ ∧ 1 <
𝑁) → (0 < (1 /
𝑁) ∧ (1 / 𝑁) < 1)) |
15 | 7, 13, 14 | syl2anc 583 |
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈
(ℤ≥‘2) → (0 < (1 / 𝑁) ∧ (1 / 𝑁) < 1)) |
16 | 15 | simprd 495 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈
(ℤ≥‘2) → (1 / 𝑁) < 1) |
17 | 16 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2)) → (1 / 𝑁) < 1) |
18 | 1 | nnred 12258 |
. . . . . . . . . . . . . 14
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℝ) |
19 | 18 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2)) → 𝑃 ∈ ℝ) |
20 | | prmgt1 16668 |
. . . . . . . . . . . . . 14
⊢ (𝑃 ∈ ℙ → 1 <
𝑃) |
21 | 20 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2)) → 1 < 𝑃) |
22 | | 1red 11246 |
. . . . . . . . . . . . 13
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2)) → 1 ∈ ℝ) |
23 | 19, 21, 11, 22 | cxpltd 26666 |
. . . . . . . . . . . 12
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2)) → ((1 / 𝑁) < 1 ↔ (𝑃↑𝑐(1 / 𝑁)) < (𝑃↑𝑐1))) |
24 | 17, 23 | mpbid 231 |
. . . . . . . . . . 11
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2)) → (𝑃↑𝑐(1 / 𝑁)) < (𝑃↑𝑐1)) |
25 | 2 | nncnd 12259 |
. . . . . . . . . . . 12
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2)) → 𝑃 ∈ ℂ) |
26 | 25 | cxp1d 26653 |
. . . . . . . . . . 11
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2)) → (𝑃↑𝑐1) = 𝑃) |
27 | 24, 26 | breqtrd 5174 |
. . . . . . . . . 10
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2)) → (𝑃↑𝑐(1 / 𝑁)) < 𝑃) |
28 | 12, 27 | ltned 11381 |
. . . . . . . . 9
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2)) → (𝑃↑𝑐(1 / 𝑁)) ≠ 𝑃) |
29 | 28 | neneqd 2942 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2)) → ¬ (𝑃↑𝑐(1 / 𝑁)) = 𝑃) |
30 | 29 | adantr 480 |
. . . . . . 7
⊢ (((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2)) ∧ (𝑃↑𝑐(1 / 𝑁)) ∈ ℕ) → ¬
(𝑃↑𝑐(1 / 𝑁)) = 𝑃) |
31 | 25 | cxp0d 26652 |
. . . . . . . . . . 11
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2)) → (𝑃↑𝑐0) =
1) |
32 | 15 | simpld 494 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈
(ℤ≥‘2) → 0 < (1 / 𝑁)) |
33 | 32 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2)) → 0 < (1 / 𝑁)) |
34 | 19, 21, 4, 11 | cxpltd 26666 |
. . . . . . . . . . . 12
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2)) → (0 < (1 / 𝑁) ↔ (𝑃↑𝑐0) < (𝑃↑𝑐(1 /
𝑁)))) |
35 | 33, 34 | mpbid 231 |
. . . . . . . . . . 11
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2)) → (𝑃↑𝑐0) < (𝑃↑𝑐(1 /
𝑁))) |
36 | 31, 35 | eqbrtrrd 5172 |
. . . . . . . . . 10
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2)) → 1 < (𝑃↑𝑐(1 / 𝑁))) |
37 | 22, 36 | gtned 11380 |
. . . . . . . . 9
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2)) → (𝑃↑𝑐(1 / 𝑁)) ≠ 1) |
38 | 37 | neneqd 2942 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2)) → ¬ (𝑃↑𝑐(1 / 𝑁)) = 1) |
39 | 38 | adantr 480 |
. . . . . . 7
⊢ (((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2)) ∧ (𝑃↑𝑐(1 / 𝑁)) ∈ ℕ) → ¬
(𝑃↑𝑐(1 / 𝑁)) = 1) |
40 | | dvdsprime 16658 |
. . . . . . . . 9
⊢ ((𝑃 ∈ ℙ ∧ (𝑃↑𝑐(1 /
𝑁)) ∈ ℕ) →
((𝑃↑𝑐(1 / 𝑁)) ∥ 𝑃 ↔ ((𝑃↑𝑐(1 / 𝑁)) = 𝑃 ∨ (𝑃↑𝑐(1 / 𝑁)) = 1))) |
41 | 40 | adantlr 714 |
. . . . . . . 8
⊢ (((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2)) ∧ (𝑃↑𝑐(1 / 𝑁)) ∈ ℕ) →
((𝑃↑𝑐(1 / 𝑁)) ∥ 𝑃 ↔ ((𝑃↑𝑐(1 / 𝑁)) = 𝑃 ∨ (𝑃↑𝑐(1 / 𝑁)) = 1))) |
42 | 41 | biimpd 228 |
. . . . . . 7
⊢ (((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2)) ∧ (𝑃↑𝑐(1 / 𝑁)) ∈ ℕ) →
((𝑃↑𝑐(1 / 𝑁)) ∥ 𝑃 → ((𝑃↑𝑐(1 / 𝑁)) = 𝑃 ∨ (𝑃↑𝑐(1 / 𝑁)) = 1))) |
43 | 30, 39, 42 | mtord 878 |
. . . . . 6
⊢ (((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2)) ∧ (𝑃↑𝑐(1 / 𝑁)) ∈ ℕ) → ¬
(𝑃↑𝑐(1 / 𝑁)) ∥ 𝑃) |
44 | | nan 829 |
. . . . . 6
⊢ (((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2)) → ¬ ((𝑃↑𝑐(1 / 𝑁)) ∈ ℕ ∧ (𝑃↑𝑐(1 /
𝑁)) ∥ 𝑃)) ↔ (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ≥‘2))
∧ (𝑃↑𝑐(1 / 𝑁)) ∈ ℕ) → ¬
(𝑃↑𝑐(1 / 𝑁)) ∥ 𝑃)) |
45 | 43, 44 | mpbir 230 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2)) → ¬ ((𝑃↑𝑐(1 / 𝑁)) ∈ ℕ ∧ (𝑃↑𝑐(1 /
𝑁)) ∥ 𝑃)) |
46 | | prmz 16646 |
. . . . . . . 8
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℤ) |
47 | | eluz2nn 12899 |
. . . . . . . 8
⊢ (𝑁 ∈
(ℤ≥‘2) → 𝑁 ∈ ℕ) |
48 | | zrtdvds 41905 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑃↑𝑐(1 /
𝑁)) ∈ ℕ) →
(𝑃↑𝑐(1 / 𝑁)) ∥ 𝑃) |
49 | 46, 47, 48 | syl3an12 41697 |
. . . . . . 7
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2) ∧ (𝑃↑𝑐(1 / 𝑁)) ∈ ℕ) → (𝑃↑𝑐(1 /
𝑁)) ∥ 𝑃) |
50 | 49 | 3expia 1119 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2)) → ((𝑃↑𝑐(1 / 𝑁)) ∈ ℕ → (𝑃↑𝑐(1 /
𝑁)) ∥ 𝑃)) |
51 | 50 | ancld 550 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2)) → ((𝑃↑𝑐(1 / 𝑁)) ∈ ℕ → ((𝑃↑𝑐(1 /
𝑁)) ∈ ℕ ∧
(𝑃↑𝑐(1 / 𝑁)) ∥ 𝑃))) |
52 | 45, 51 | mtod 197 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2)) → ¬ (𝑃↑𝑐(1 / 𝑁)) ∈
ℕ) |
53 | 1 | nnrpd 13047 |
. . . . . . . . 9
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℝ+) |
54 | 53 | 3ad2ant1 1131 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2) ∧ (𝑃↑𝑐(1 / 𝑁)) ∈ ℤ) → 𝑃 ∈
ℝ+) |
55 | 7 | 3ad2ant2 1132 |
. . . . . . . . 9
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2) ∧ (𝑃↑𝑐(1 / 𝑁)) ∈ ℤ) → 𝑁 ∈
ℝ) |
56 | 9 | 3ad2ant2 1132 |
. . . . . . . . 9
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2) ∧ (𝑃↑𝑐(1 / 𝑁)) ∈ ℤ) → 𝑁 ≠ 0) |
57 | 55, 56 | rereccld 12072 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2) ∧ (𝑃↑𝑐(1 / 𝑁)) ∈ ℤ) → (1 /
𝑁) ∈
ℝ) |
58 | 54, 57 | cxpgt0d 26685 |
. . . . . . 7
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2) ∧ (𝑃↑𝑐(1 / 𝑁)) ∈ ℤ) → 0 <
(𝑃↑𝑐(1 / 𝑁))) |
59 | 58 | 3expia 1119 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2)) → ((𝑃↑𝑐(1 / 𝑁)) ∈ ℤ → 0 <
(𝑃↑𝑐(1 / 𝑁)))) |
60 | 59 | ancld 550 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2)) → ((𝑃↑𝑐(1 / 𝑁)) ∈ ℤ → ((𝑃↑𝑐(1 /
𝑁)) ∈ ℤ ∧ 0
< (𝑃↑𝑐(1 / 𝑁))))) |
61 | | elnnz 12599 |
. . . . 5
⊢ ((𝑃↑𝑐(1 /
𝑁)) ∈ ℕ ↔
((𝑃↑𝑐(1 / 𝑁)) ∈ ℤ ∧ 0 <
(𝑃↑𝑐(1 / 𝑁)))) |
62 | 60, 61 | imbitrrdi 251 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2)) → ((𝑃↑𝑐(1 / 𝑁)) ∈ ℤ → (𝑃↑𝑐(1 /
𝑁)) ∈
ℕ)) |
63 | 52, 62 | mtod 197 |
. . 3
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2)) → ¬ (𝑃↑𝑐(1 / 𝑁)) ∈
ℤ) |
64 | | zrtelqelz 41904 |
. . . . 5
⊢ ((𝑃 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑃↑𝑐(1 /
𝑁)) ∈ ℚ) →
(𝑃↑𝑐(1 / 𝑁)) ∈
ℤ) |
65 | 46, 47, 64 | syl3an12 41697 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2) ∧ (𝑃↑𝑐(1 / 𝑁)) ∈ ℚ) → (𝑃↑𝑐(1 /
𝑁)) ∈
ℤ) |
66 | 65 | 3expia 1119 |
. . 3
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2)) → ((𝑃↑𝑐(1 / 𝑁)) ∈ ℚ → (𝑃↑𝑐(1 /
𝑁)) ∈
ℤ)) |
67 | 63, 66 | mtod 197 |
. 2
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2)) → ¬ (𝑃↑𝑐(1 / 𝑁)) ∈
ℚ) |
68 | 12, 67 | eldifd 3958 |
1
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2)) → (𝑃↑𝑐(1 / 𝑁)) ∈ (ℝ ∖
ℚ)) |